form machining. CIRP Annals – Manufacturing Tech-
nology, 41(1):437–440.
Fischler, M. and Bolles, R. (1981). RANdom SAmpling
Consensus: a paradigm for model fitting with appli-
cation to image analysis and automated cartography.
Commun. Assoc. Comp. Mach., 24:358–367.
”Fitzgibbon, A. W., Cross, G., and Zisserman, A. (”1998”).
”automatic 3D model construction for turn-table se-
quences”. In ”3D Structure from Multiple Images of
Large-Scale Environments, LNCS 1506”, pages ”155–
170”.
Gauglitz, S., H
¨
ollerer, T., and Turk, M. (2011). Evaluation
of interest point detectors and feature descriptors for
visual tracking. International Journal of Computer
Vision, 94(3):335–360.
Hartley, R. I. and Sturm, P. (1997). Triangulation. Computer
Vision and Image Understanding: CVIU, 68(2):146–
157.
Hartley, R. I. and Zisserman, A. (2003). Multiple View Ge-
ometry in Computer Vision. Cambridge University
Press.
Jamil Drar
´
eni, S
´
ebastien Roy, P. S. (2009). Geometric
video projector auto-calibration. In Proceedings of the
IEEE International Workshop on Projector-Camera
Systems, pages 39–46.
Kazo, C. and Hajder, L. (2012). High-quality structured-
light scanning of 3D objects using turntable. In IEEE
3rd International Conference on Cognitive Infocom-
munications (CogInfoCom) , pages 553–557.
Lepetit, V., F.Moreno-Noguer, and P.Fua (2009). Epnp: An
accurate o(n) solution to the pnp problem. Interna-
tional Journal Computer Vision, 81(2):155–166.
Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011).
Brisk: Binary robust invariant scalable keypoints. In
Proceedings of the 2011 International Conference on
Computer Vision, pages 2548–2555.
Liao, J. and Cai, L. (2008). A calibration method for un-
coupling projector and camera of a structured light
system. In IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, pages 770 – 774.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Proceedings of the International
Conference on Computer Vision, ICCV ’99, pages
1150–1157.
Martynov, I., Kamarainen, J.-K., and Lensu, L. (2011). Pro-
jector calibration by ”inverse camera calibration”. In
SCIA, volume 6688 of Lecture Notes in Computer Sci-
ence, pages 536–544.
Moreno, D. and Taubin, G. (2012). Simple, accurate, and
robust projector-camera calibration. In 2012 Second
International Conference on 3D Imaging, Modeling,
Processing, Visualization & Transmission, Zurich,
Switzerland, October 13-15, 2012, pages 464–471.
Muja, M. and Lowe, D. G. (2009). Fast approximate near-
est neighbors with automatic algorithm configuration.
In In VISAPP International Conference on Computer
Vision Theory and Applications, pages 331–340.
Nayar, S. K., Krishnan, G., Grossberg, M. D., and Raskar,
R. (2006). Fast separation of direct and global com-
ponents of a scene using high frequency illumination.
ACM Trans. Graph., 25(3):935–944.
Pal, C. J., Weinman, J. J., Tran, L. C., and Scharstein, D.
(2012). On learning conditional random fields for
stereo - exploring model structures and approximate
inference. International Journal of Computer Vision,
99(3):319–337.
Park, S.-Y. and Park, G. G. (2010). Active calibration of
camera-projector systems based on planar homogra-
phy. In ICPR, pages 320–323.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.
(2011). Orb: An efficient alternative to sift or surf.
In Proceedings of the 2011 International Conference
on Computer Vision, ICCV ’11, pages 2564–2571.
Sadlo, F., Weyrich, T., Peikert, R., and Gross, M. H.
(2005). A practical structured light acquisition sys-
tem for point-based geometry and texture. In Sympo-
sium on Point Based Graphics, Stony Brook, NY, USA,
2005. Proceedings, pages 89–98.
Scharstein, D., Hirschm
¨
uller, H., Kitajima, Y., Krathwohl,
G., Nesic, N., Wang, X., and Westling, P. (2014).
High-resolution stereo datasets with subpixel-accurate
ground truth. In Pattern Recognition - 36th German
Conference, GCPR 2014, M
¨
unster, Germany, Septem-
ber 2-5, 2014, Proceedings, pages 31–42.
Scharstein, D. and Szeliski, R. (2002). A Taxonomy and
Evaluation of Dense Two-Frame Stereo Correspon-
dence Algorithms. International Journal of Computer
Vision, 47:7–42.
Scharstein, D. and Szeliski, R. (2003). High-accuracy
stereo depth maps using structured light. In CVPR
(1), pages 195–202.
Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., and
Szeliski, R. (2006). A comparison and evaluation of
multi-view stereo reconstruction algorithms. In 2006
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR 2006), 17-22
June 2006, New York, NY, USA, pages 519–528.
Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cre-
mers, D. (”2012”). ”a benchmark for the evaluation
of rgb-d slam systems”. In ”Proc. of the International
Conference on Intelligent Robot Systems (IROS)”.
Xu, Y. and Aliaga, D. G. (2007). Robust pixel classification
for 3d modeling with structured light. In Proceedings
of the Graphics Interface 2007 Conference, May 28-
30, 2007, Montreal, Canada, pages 233–240.
Yamauchi, K., Saito, H., and Sato, Y. (2008). Calibration
of a structured light system by observing planar ob-
ject from unknown viewpoints. In 19th International
Conference on Pattern Recognition, pages 1–4.
Zhang, Z. (2000). A flexible new technique for camera cal-
ibration. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(11):1330–1334.
A Turntable-based Approach for Ground Truth Tracking Data Generation
511