REFERENCES
Alvarez, L., Weickert, J., and S
´
anchez, J. (2000). Reli-
able estimation of dense optical flow fields with large
displacements. International Journal of Computer Vi-
sion, 39(1):41–56.
Andrade, E. L., Blunsden, S., and Fisher, R. B. (2006a).
Hidden markov models for optical flow analysis in
crowds. In Pattern Recognition, 2006. ICPR 2006.
18th International Conference on, volume 1, pages
460–463. IEEE.
Andrade, E. L., Blunsden, S., and Fisher, R. B. (2006b).
Modelling crowd scenes for event detection. In
Pattern Recognition, 2006. ICPR 2006. 18th Inter-
national Conference on, volume 1, pages 175–178.
IEEE.
Bayona,
´
A., SanMiguel, J. C., and Mart
´
ınez, J. M. (2009).
Comparative evaluation of stationary foreground ob-
ject detection algorithms based on background sub-
traction techniques. In Advanced Video and Signal
Based Surveillance, 2009. AVSS’09. Sixth IEEE Inter-
national Conference on, pages 25–30. IEEE.
Chaudhry, R., Ravichandran, A., Hager, G., and Vidal, R.
(2009). Histograms of oriented optical flow and binet-
cauchy kernels on nonlinear dynamical systems for
the recognition of human actions. In Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 1932–1939. IEEE.
Cong, Y., Yuan, J., and Liu, J. (2011). Sparse reconstruc-
tion cost for abnormal event detection. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pages 3449–3456. IEEE.
Cui, X., Liu, Q., Gao, M., and Metaxas, D. N. (2011). Ab-
normal detection using interaction energy potentials.
In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 3161–3167. IEEE.
Dalal, N. and Triggs, B. (2005). Histograms of oriented gra-
dients for human detection. In Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on, volume 1, pages 886–
893. IEEE.
Eddy, S. R. (1996). Hidden markov models. Current opin-
ion in structural biology, 6(3):361–365.
Goldberger, J., Gordon, S., and Greenspan, H. (2003). An
efficient image similarity measure based on approxi-
mations of kl-divergence between two gaussian mix-
tures. In Computer Vision, 2003. Proceedings. Ninth
IEEE International Conference on, pages 487–493.
IEEE.
Javed, O. and Shah, M. (2002). Tracking and object classi-
fication for automated surveillance. In Computer Vi-
sionECCV 2002, pages 343–357. Springer.
Klaser, A., Marszałek, M., and Schmid, C. (2008). A spatio-
temporal descriptor based on 3d-gradients. In BMVC
2008-19th British Machine Vision Conference, pages
275–1. British Machine Vision Association.
Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M.,
and Shafer, S. (2000). Multi-camera multi-person
tracking for easyliving. In Visual Surveillance, 2000.
Proceedings. Third IEEE International Workshop on,
pages 3–10. IEEE.
Li, W., Mahadevan, V., and Vasconcelos, N. (2014).
Anomaly detection and localization in crowded
scenes. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 36(1):18–32.
Liem, M. C. and Gavrila, D. M. (2014). Joint multi-
person detection and tracking from overlapping cam-
eras. Computer Vision and Image Understanding,
128:36–50.
Lucas, B. D., Kanade, T., et al. (1981). An iterative image
registration technique with an application to stereo vi-
sion. In IJCAI, volume 81, pages 674–679.
Mahadevan, V., Li, W., Bhalodia, V., and Vasconcelos, N.
(2010). Anomaly detection in crowded scenes. In
Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 1975–1981. IEEE.
Mehran, R., Oyama, A., and Shah, M. (2009). Abnormal
crowd behavior detection using social force model.
In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 935–942.
IEEE.
Moon, T. K. (1996). The expectation-maximization algo-
rithm. Signal processing magazine, IEEE, 13(6):47–
60.
Pan, J., Fan, Q., and Pankanti, S. (2011). Robust abandoned
object detection using region-level analysis. In Im-
age Processing (ICIP), 2011 18th IEEE International
Conference on, pages 3597–3600. IEEE.
Roshtkhari, M. J. and Levine, M. D. (2013). An on-line,
real-time learning method for detecting anomalies in
videos using spatio-temporal compositions. Computer
vision and image understanding, 117(10):1436–1452.
Sato, K. and Aggarwal, J. (2001). Tracking and recognizing
two-person interactions in outdoor image sequences.
In Multi-Object Tracking, 2001. Proceedings. 2001
IEEE Workshop on, pages 87–94. IEEE.
Tian, Y., Feris, R. S., Liu, H., Hampapur, A., and Sun, M.-T.
(2011). Robust detection of abandoned and removed
objects in complex surveillance videos. Systems, Man,
and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 41(5):565–576.
Wang, B., Ye, M., Li, X., Zhao, F., and Ding, J.
(2012). Abnormal crowd behavior detection using
high-frequency and spatio-temporal features. Ma-
chine Vision and Applications, 23(3):501–511.
Wang, S. and Miao, Z. (2010). Anomaly detection in
crowd scene using historical information. In Intelli-
gent Signal Processing and Communication Systems
(ISPACS), 2010 International Symposium on, pages
1–4. IEEE.
Zhou, S., Shen, W., Zeng, D., and Zhang, Z. (2015). Un-
usual event detection in crowded scenes by trajectory
analysis. In Acoustics, Speech and Signal Process-
ing (ICASSP), 2015 IEEE International Conference
on, pages 1300–1304. IEEE.
Abnormal Event Detection using Scene Partitioning by Regional Activity Pattern Analysis
643