Classification-driven Active Contour for Dress Segmentation
Lixuan Yang, Helena Rodriguez, Michel Crucianu, Marin Ferecatu
2016
Abstract
In this work we propose a a dedicated object extractor for dress segmentation in fashion images by combining local information with a prior learning. First, a person detector is applied to localize sites in the image that are likely to contain the object. Then, an intra-image two-stage learning process is developed to roughly separate foreground pixels from the background. Finally, the object is finely segmented by employing an active contour algorithm that takes into account the previous segmentation and injects specific knowledge about local curvature in the energy function. The method is validated on a database of manually segmented images. We show examples of both successful segmentation and difficult cases. We quantitatively analyze each component and compare with the well-known GrabCut foreground extraction method.
References
- Chan, T. F. and Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2):266-277.
- Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27.
- Chen, H., Gallagher, A., and Girod, B. (2012). Describing clothing by semantic attributes. In Proceedings of the 12th European Conference on Computer Vision - Volume Part III, ECCV'12, pages 609-623.
- Chen, Q., Huang, J., Feris, R., Brown, L. M., Dong, J., and Yan, S. (2015). Deep domain adaptation for describing people based on fine-grained clothing attributes. In CVPR.
- Datta, R., Joshi, D., Li, J., and Wang, J. (2008). Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys (CSUR), 40(2):1-60.
- Deselaers, T., Keysers, D., and Ney, H. (2008). Features for image retrieval: An experimental comparison. Information Retrieval, 11(2):77-107.
- Di, W., Wah, C., Bhardwaj, A., Piramuthu, R., and Sundaresan, N. (2013). Style finder: Fine-grained clothing style detection and retrieval. In Third IEEE International Workshop on Mobile Vision, CVPR, pages 8-13.
- Dong, J., Chen, Q., Shen, X., Yang, J., and Yan, S. (2014). Towards unified human parsing and pose estimation. In CVPR, pages 843-850.
- Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D. (2010). Object detection with discriminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9):1627-1645.
- Hsu, E., Paz, C., and Shen, S. (2011). Clothing image retrieval for smarter shopping (stanford project).
- Jammalamadaka, N., Minocha, A., Singh, D., and Jawahar, C. (2013). Parsing clothes in unrestricted images. In Proceedings of the British Machine Vision Conference.
- Kalantidis, Y., Kennedy, L., and Li, L.-J. (2013). Getting the look: Clothing recognition and segmentation for automatic product suggestions in everyday photos. In Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval, ICMR 7813, pages 105-112.
- King, I. and Lau, T. K. (1996). A feature-based image retrieval database for the fashion, textile, and clothing industry in hong kong. In International Symposium on Multi-Technology Information Processing (ISMIP'96), Hsin-Chu, Taiwan.
- Lew, M., Sebe, N., Djeraba, C., and Jain, R. (2006). Content-based multimedia information retrieval: State of the art and challenges. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP), 2(1):19.
- Liu, S., Feng, J., Song, Z., Zhang, T., Lu, H., Xu, C., and Yan, S. (2012a). Hi, magic closet, tell me what to wear! In ACM Multimedia, pages 619-628. ACM.
- Liu, S., Liang, X., Liu, l., Lu, K., Liang, L., and Yan, S. (2014). Fashion parsing with video context. In ACM Multimedia, pages 467-476. ACM.
- Liu, S., Song, Z., Liu, G., Xu, C., Lu, H., and Yan, S. (2012b). Street-to-shop: Cross-scenario clothing retrieval via parts alignment and auxiliary set. In CVPR, pages 3330-3337.
- Liu, Y., Zhang, D., Lu, G., and Ma, W.-Y. (2007). A survey of content-based image retrieval with high-level semantics. Pattern Recognition, 40(1):262-282.
- Nguyen, T. V., Liu, S., Ni, B., Tan, J., Rui, Y., and Yan, S. (2012). Sense beauty via face, dressing, and/or voice. In ACM Multimedia, pages 239-248.
- Redi, M. (2013). Novel methods for semantic and aesthetic multimedia retrieval. PhD thesis, Universite de Nice, Sophia Antipolis.
- Rother, C., Kolmogorov, V., and Blake, A. (2004). GrabCut - interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, pages 309-314.
- Scholkopf, B. and Smola, A. J. (2001). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press.
- Simo-Serra, E., Fidler, S., Moreno-Noguer, F., and Urtasun, R. (2014). A high performance crf model for clothes parsing. In ACCV.
- Song, Z., Wang, M., sheng Hua, X., and Yan, S. (2011). Predicting occupation via human clothing and contexts. In Proceedings of the 2011 International Conference on Computer Vision, ICCV 7811, pages 1084- 1091, Washington, DC, USA. IEEE Computer Society.
- Yamaguchi, K. (Last checked: September 2015). Fashionista image database, http://vision.is.tohoku.ac.jp/ ˜kyamagu/research/clothing parsing/.
- Yamaguchi, K., Hadi, K., Luis, E., and Tamara, L. B. (2015a). Retrieving similar styles to parse clothing. IEEE Transaction on PAMI, 37:1028-1040.
- Yamaguchi, K., Kiapour, M. H., and Berg, T. L. (2013). Paper doll parsing: Retrieving similar styles to parse clothing items. In Proceedings of the 2013 IEEE International Conference on Computer Vision, ICCV 7813, pages 3519-3526, Washington, DC, USA.
- Yamaguchi, K., Okatani, T., Sudo, K., Murasaki, K., and Taniguchi, Y. (2015b). Mix and match: Joint model for clothing and attribute recognition. In Xie, X., W. Jones, M., and K. L. Tam, G., editors, Proceedings of the British Machine Vision Conference (BMVC), pages 51.1-51.12. BMVA Press.
- Yang, M. and Yu, K. (2011). Real-time clothing recognition in surveillance videos. In ICIP, pages 2937-2940. IEEE.
- Yang, Y. and Ramanan, D. (2013). Articulated human detection with flexible mixtures of parts. IEEE Transaction on PAMI, 35:2878-2890.
Paper Citation
in Harvard Style
Yang L., Rodriguez H., Crucianu M. and Ferecatu M. (2016). Classification-driven Active Contour for Dress Segmentation . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 22-29. DOI: 10.5220/0005721000220029
in Bibtex Style
@conference{visapp16,
author={Lixuan Yang and Helena Rodriguez and Michel Crucianu and Marin Ferecatu},
title={Classification-driven Active Contour for Dress Segmentation},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)},
year={2016},
pages={22-29},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005721000220029},
isbn={978-989-758-175-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2016)
TI - Classification-driven Active Contour for Dress Segmentation
SN - 978-989-758-175-5
AU - Yang L.
AU - Rodriguez H.
AU - Crucianu M.
AU - Ferecatu M.
PY - 2016
SP - 22
EP - 29
DO - 10.5220/0005721000220029