Table 5: Accuracy (%) of classification using SVM.
(a) All sequences
robots cars trucks pedestrian Conical cube cylinder face
OFE 78 92 100 72 98 93 96 98
SIFT 82 89 66 75 95 95 97 99
(b) “cars” and “trucks”
cars trucks
OFE 97.9 98.5
SIFT 97.2 96.9
REFERENCES
Borshukov, G. D., Bozdagi, G., Altunbasak, Y., and Tekalp,
A. M. (1997). Motion segmentation by multi-stage
affine classification. IEEE Trans. Image Processing,
6:1591–1594.
Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A
training algorithm for optimal margin classifiers. In
Proceedings of the fifth annual workshop on Compu-
tational learning theory, pages 144–152. ACM.
Bouguet, J.-Y. (2001). Pyramidal implementation of the
affine lucas kanade feature tracker description of the
algorithm. Intel Corporation, 5.
Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray,
C. (2004). Visual categorization with bags of key-
points. In Workshop on statistical learning in com-
puter vision, ECCV, volume 1, pages 1–2. Prague.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society. Se-
ries B (Methodological), pages 1–38.
Elhamifar, E. and Vidal, R. (2009). Sparse subspace clus-
tering. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 2790–
2797. IEEE.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395.
Horn, B. K. and Schunck, B. G. (1981). Determining optical
flow. In 1981 Technical Symposium East, pages 319–
331. International Society for Optics and Photonics.
Karasulu, B. and Korukoglu, S. (2013). Moving object de-
tection and tracking in videos. In Performance Evalu-
ation Software, pages 7–30. Springer.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Computer vision, 1999. The pro-
ceedings of the seventh IEEE international conference
on, volume 2, pages 1150–1157. Ieee.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60(2):91–110.
Lucas, B. D., Kanade, T., et al. (1981). An iterative image
registration technique with an application to stereo vi-
sion. In IJCAI, volume 81, pages 674–679.
Martinez-Conde, S., Macknik, S. L., and Hubel, D. H.
(2004). The role of fixational eye movements in vi-
sual perception. Nature Neuroscience, 5:229 – 240.
Narkhede, H. (2013). Review of image segmentation tech-
niques. International Journal of Science and Modern
Engineering (IJISME), 1:5461.
Pan, Z. and Ngo, C.-W. (2005). Selective object stabiliza-
tion for home video consumers. IEEE Trans. Con-
sumer Electronics, 51(4):1074–1084.
Rao, S. R., Tron, R., Vidal, R., and Ma, Y. (2008). Mo-
tion segmentation via robust subspace separation in
the presence of outlying, incomplete, or corrupted tra-
jectories. In Computer Vision and Pattern Recogni-
tion, 2008. CVPR 2008. IEEE Conference on, pages
1–8. IEEE.
Seerha, G. K. and Rajneet, K. (2013). Review on recent
image segmentation techniques. International Jour-
nal on Computer Science and Engineering (IJCSE),
5:109–112.
Selim, S. Z. and Ismail, M. A. (1984). K-means-type algo-
rithms: a generalized convergence theorem and char-
acterization of local optimality. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, (1):81–
87.
Shi, J. and Malik, J. (1998). Motion segmentation and track-
ing using normalized cuts. In Computer Vision, 1998.
Sixth International Conference on, pages 1154–1160.
IEEE.
Wang, J. Y. and Adelson, E. H. (1994). Representing
moving images with layers. Image Processing, IEEE
Transactions on, 3(5):625–638.
Wang, Y., Jodoin, P.-M., Porikli, F., Konrad, J., Benezeth,
Y., and Ishwar, P. (2014). Cdnet 2014: An expanded
change detection benchmark dataset. In Computer Vi-
sion and Pattern Recognition Workshops (CVPRW),
2014 IEEE Conference on, pages 393–400. IEEE.
Weiss, Y. (1997). Smoothness in layers: Motion segmenta-
tion using nonparametric mixture estimation. In Com-
puter Vision and Pattern Recognition, 1997. Proceed-
ings., 1997 IEEE Computer Society Conference on,
pages 520–526. IEEE.
Yan, J. and Pollefeys, M. (2006). A general framework for
motion segmentation: Independent, articulated, rigid,
non-rigid, degenerate and non-degenerate. In Com-
puter Vision–ECCV 2006, pages 94–106. Springer.
Zappella, L., Llad
´
o, X., and Salvi, J. (2008). Motion seg-
mentation: a review. In Proceedings of the 2008 con-
ference on Artificial Intelligence Research and Devel-
opment: Proceedings of the 11th International Con-
ference of the Catalan Association for Artificial Intel-
ligence, pages 398–407. IOS Press.
VISAPP 2016 - International Conference on Computer Vision Theory and Applications
658