ACKNOWLEDGEMENTS
This work was partially supported by EAGLE, Euro-
peana network of Ancient Greek and Latin Epigra-
phy, co-founded by the European Commision, CIP-
ICT-PSP.2012.2.1 - Europeana and creativity, Grant
Agreement n. 325122.
REFERENCES
Amato, G., Bolettieri, P., Falchi, F., and Gennaro, C.
(2013a). Large scale image retrieval using vector of
locally aggregated descriptors. In Brisaboa, N., Pe-
dreira, O., and Zezula, P., editors, Similarity Search
and Applications, volume 8199 of Lecture Notes in
Computer Science, pages 245–256. Springer Berlin
Heidelberg.
Amato, G., Bolettieri, P., Falchi, F., Gennaro, C., and Ra-
bitti, F. (2011). Combining local and global visual fea-
ture similarity using a text search engine. In Content-
Based Multimedia Indexing (CBMI), 2011 9th Inter-
national Workshop on, pages 49 –54.
Amato, G., Falchi, F., and Gennaro, C. (2013b). On reduc-
ing the number of visual words in the bag-of-features
representation. In VISAPP 2013 - Proceedings of the
International Conference on Computer Vision Theory
and Applications, volume 1, pages 657–662.
Amato, G., Falchi, F., Gennaro, C., and Bolettieri, P.
(2014a). Indexing vectors of locally aggregated de-
scriptors using inverted files. In Proceedings of Inter-
national Conference on Multimedia Retrieval, ICMR
’14, pages 439:439–439:442.
Amato, G., Gennaro, C., and Savino, P. (2014b). MI-
File: using inverted files for scalable approximate sim-
ilarity search. Multimedia Tools and Applications,
71(3):1333–1362.
Arandjelovic, R. and Zisserman, A. (2013). All about
VLAD. In Computer Vision and Pattern Recogni-
tion (CVPR), 2013 IEEE Conference on, pages 1578–
1585.
Bay, H., Tuytelaars, T., and Van Gool, L. (2006). SURF:
Speeded Up Robust Features. In Leonardis, A.,
Bischof, H., and Pinz, A., editors, Computer Vision
- ECCV 2006, volume 3951 of Lecture Notes in Com-
puter Science, pages 404–417. Springer Berlin Hei-
delberg.
Boureau, Y.-L., Bach, F., LeCun, Y., and Ponce, J. (2010).
Learning mid-level features for recognition. In Com-
puter Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 2559–2566.
Chavez, G., Figueroa, K., and Navarro, G. (2008). Effec-
tive proximity retrieval by ordering permutations. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions on, 30(9):1647 –1658.
Chen, D., Tsai, S., Chandrasekhar, V., Takacs, G., Chen, H.,
Vedantham, R., Grzeszczuk, R., and Girod, B. (2011).
Residual enhanced visual vectors for on-device im-
age matching. In Signals, Systems and Computers
(ASILOMAR), 2011 Conference Record of the Forty
Fifth Asilomar Conference on, pages 850–854.
Chum, O., Philbin, J., Sivic, J., Isard, M., and Zisserman,
A. (2007). Total recall: Automatic query expansion
with a generative feature model for object retrieval. In
Computer Vision, 2007. ICCV 2007. IEEE 11th Inter-
national Conference on, pages 1–8.
Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray,
C. (2004). Visual categorization with bags of key-
points. Workshop on statistical learning in computer
vision, ECCV, 1(1-22):1–2.
Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S.
(2004). Locality-sensitive hashing scheme based on
p-stable distributions. In Proceedings of the twentieth
annual symposium on Computational geometry, SCG
’04, pages 253–262.
Delhumeau, J., Gosselin, P.-H., J
´
egou, H., and P
´
erez, P.
(2013). Revisiting the VLAD image representation.
In Proceedings of the 21st ACM International Confer-
ence on Multimedia, MM ’13, pages 653–656.
Esuli, A. (2009). MiPai: Using the PP-Index to Build an
Efficient and Scalable Similarity Search System. In
Proceedings of the 2009 Second International Work-
shop on Similarity Search and Applications, SISAP
’09, pages 146–148.
Fagin, R., Kumar, R., and Sivakumar, D. (2003). Compar-
ing top-k lists. SIAM J. of Discrete Math., 17(1):134–
160.
Gennaro, C., Amato, G., Bolettieri, P., and Savino, P.
(2010). An approach to content-based image retrieval
based on the lucene search engine library. In Lal-
mas, M., Jose, J., Rauber, A., Sebastiani, F., and
Frommholz, I., editors, Research and Advanced Tech-
nology for Digital Libraries, volume 6273 of Lecture
Notes in Computer Science, pages 55–66. Springer
Berlin Heidelberg.
Jaakkola, T. and Haussler, D. (1998). Exploiting generative
models in discriminative classifiers. In In Advances
in Neural Information Processing Systems 11, pages
487–493.
J
´
egou, H. and Chum, O. (2012). Negative evidences and
co-occurences in image retrieval: The benefit of pca
and whitening. In Fitzgibbon, A., Lazebnik, S., Per-
ona, P., Sato, Y., and Schmid, C., editors, Computer
Vision–ECCV 2012, volume 7573 of Lecture Notes in
Computer Science, pages 774–787. Springer.
J
´
egou, H., Douze, M., and Schmid, C. (2008). Hamming
embedding and weak geometric consistency for large
scale image search. In Forsyth, D., Torr, P., and Zis-
serman, A., editors, Computer Vision – ECCV 2008,
volume 5302 of Lecture Notes in Computer Science,
pages 304–317. Springer Berlin Heidelberg.
J
´
egou, H., Douze, M., and Schmid, C. (2009). Packing bag-
of-features. In Computer Vision, 2009 IEEE 12th In-
ternational Conference on, pages 2357 –2364.
J
´
egou, H., Douze, M., and Schmid, C. (2010). Improving
bag-of-features for large scale image search. Interna-
tional Journal of Computer Vision, 87:316–336.
J
´
egou, H., Douze, M., Schmid, C., and P
´
erez, P. (2010a).
Aggregating local descriptors into a compact image
representation. In IEEE Conference on Computer Vi-
sion & Pattern Recognition, pages 3304–3311.
Using Apache Lucene to Search Vector of Locally Aggregated Descriptors
391