Givens, G. H., Beveridge, J. R., Lui, Y. M., Bolme, D. S.,
Draper, B. A., and Phillips, P. J. (2013). Biomet-
ric face recognition: from classical statistics to future
challenges. Wiley Interdisciplinary Reviews: Compu-
tational Statistics, 5(4):288–308.
Hua, G. and Akbarzadeh, A. (2009). A robust elastic and
partial matching metric for face recognition. In Com-
puter Vision, 2009 IEEE 12th International Confer-
ence on, pages 2082–2089. IEEE.
Huang, G., Lee, H., and Learned-Miller, E. (2012). Learn-
ing hierarchical representations for face verification
with convolutional deep belief networks. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 2518–2525.
Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller,
E. (2007). Labeled faces in the wild: A database for
studying face recognition in unconstrained environ-
ments. Technical Report 07-49, University of Mas-
sachusetts, Amherst.
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. (2014).
Caffe: Convolutional architecture for fast feature em-
bedding. arXiv preprint arXiv:1408.5093.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Pereira, F., Burges, C., Bottou, L., and
Weinberger, K., editors, Advances in Neural Informa-
tion Processing Systems 25, pages 1097–1105. Curran
Associates, Inc.
Lades, M., Vorbruggen, J. C., Buhmann, J., Lange, J.,
von der Malsburg, C., Wurtz, R. P., and Konen, W.
(1993). Distortion invariant object recognition in the
dynamic link architecture. Computers, IEEE Transac-
tions on, 42(3):300–311.
Li, H., Hua, G., Lin, Z., Brandt, J., and Yang, J. (2013).
Probabilistic elastic matching for pose variant face
verification. In Computer Vision and Pattern Recogni-
tion (CVPR), 2013 IEEE Conference on, pages 3499–
3506. IEEE.
Liu, C. and Wechsler, H. (2002). Gabor feature based classi-
fication using the enhanced fisher linear discriminant
model for face recognition. Image processing, IEEE
Transactions on, 11(4):467–476.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60(2):91–110.
Mu, M., Ruan, Q., and Guo, S. (2011). Shift and gray
scale invariant features for palmprint identification us-
ing complex directional wavelet and local binary pat-
tern. Neurocomputing, 74(17):3351–3360.
Oppenheim, A. V. and Lim, J. S. (1981). The importance of
phase in signals. Proceedings of the IEEE, 69(5):529–
541.
Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep
face recognition. Proceedings of the British Machine
Vision Conference.
Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W.,
Chang, J., Hoffman, K., Marques, J., Min, J., and
Worek, W. (2005). Overview of the face recogni-
tion grand challenge. In Computer vision and pattern
recognition, 2005. CVPR 2005. IEEE computer soci-
ety conference on, volume 1, pages 947–954. IEEE.
Phillips, P. J., Moon, H., Rizvi, S. A., and Rauss, P. J.
(2000). The feret evaluation methodology for face-
recognition algorithms. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 22(10):1090–
1104.
Pinto, N., DiCarlo, J. J., and Cox, D. D. (2009). How far can
you get with a modern face recognition test set using
only simple features? In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on,
pages 2591–2598. IEEE.
Schroff, F., Kalenichenko, D., and Philbin, J. (2015).
Facenet: A unified embedding for face recognition
and clustering. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 815–823.
Sim, T., Baker, S., and Bsat, M. (2002). The cmu pose,
illumination, and expression (pie) database. In Auto-
matic Face and Gesture Recognition, 2002. Proceed-
ings. Fifth IEEE International Conference on, pages
46–51. IEEE.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.
Su, Y., Shan, S., Chen, X., and Gao, W. (2009). Hierarchi-
cal ensemble of global and local classifiers for face
recognition. Image Processing, IEEE Transactions
on, 18(8):1885–1896.
Sun, Y., Wang, X., and Tang, X. (2013). Deep learning face
representation from predicting 10,000 classes. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1891–1898.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2014). Going deeper with convolutions.
Computer Vision, 2014 IEEE 12th International Con-
ference on.
Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2013).
Deepface: Closing the gap to human-level perfor-
mance in face verification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1701–1708.
Tan, X. and Triggs, B. (2007). Fusing gabor and lbp fea-
ture sets for kernel-based face recognition. In Analysis
and Modeling of Faces and Gestures, pages 235–249.
Springer.
Turk, M. A. and Pentland, A. P. (1991). Face recogni-
tion using eigenfaces. In Computer Vision and Pat-
tern Recognition, 1991. Proceedings CVPR’91., IEEE
Computer Society Conference on, pages 586–591.
IEEE.
Vedaldi, A. and Lenc, K. (2014). Matconvnet-
convolutional neural networks for matlab. arXiv
preprint arXiv:1412.4564.
Wiskott, L., Fellous, J.-M., Kuiger, N., and Von Der Mals-
burg, C. (1997). Face recognition by elastic bunch
graph matching. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, 19(7):775–779.
Leveraging Gabor Phase for Face Identification in Controlled Scenarios
57