Braak, H. and Braak, E. (1991). Neuropathological stageing
of alzheimer-related changes. Acta Neuropathologica,
82(4):239–259.
Cortes, C. and Vapnik, V. (’95). Support-vector networks.
Mach. Learn., 20(3):273–297.
Deshpande, H., Maurel, P., and Barillot, C. (2015). Classi-
fication of Multiple Sclerosis Lesions using Adaptive
Dictionary Learning. Computerized Medical Imaging
and Graphics, pages 1–15.
Devijver, P. A. and Kittler, J. (1982). Pattern recognition:
A statistical approach. Prentice Hall.
Fisher, R. A. (1936). The use of multiple measurements in
taxonomic problems. Annals of Eugenics, 7(7):179–
188.
Gooda, C. D., Johnsrudeb, I., Ashburnera, J., Hensona,
R. N., Fristona, K. J., and Frackowiaka, R. S. (2001).
A comparison between voxel-based cortical thickness
and voxel-based morphometry in normal aging. Neu-
roImage, 14(3):685–700.
Huttona, C., Draganskia, B., Ashburnera, J., and
Weiskopfa, N. (2009). A comparison between voxel-
based cortical thickness and voxel-based morphome-
try in normal aging. NeuroImage, 48(2):371–380.
Irimia, A., Wang, B., Aylward, S. R., Prastawa, M. W.,
Pace, D. F., Gerig, G., Hovda, D. A., Kikinis, R.,
Vespa, P. M., and Horn, J. D. V. (2012). Neuroimag-
ing of structural pathology and connectomics in trau-
matic brain injury: Toward personalized outcome pre-
diction. NeuroImage: Clinical, 1(1):1 – 17.
Liu, X., Niethammer, M., Kwitt, R., McCormick, M., and
Aylward, S. R. (2014). Low-rank to the rescue - atlas-
based analyses in the presence of pathologies. In MIC-
CAI (3)’14, pages 97–104.
Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2009). Online
dictionary learning for sparse coding. In Proceedings
of the 26th ICML, pages 689–696.
Parzen, E. (1962). On estimation of a probability den-
sity function and mode. The Annals of Mathematical
Statistics, 33(3):pp. 1065–1076.
Radua, J. and Mataix-Cols, D. (2009). Voxel-wise
meta-analysis of grey matter changes in obsessive-
compulsive disorder. The British J. of Psychiatry,
195(5):393–402.
Rosenblatt, M. (1956). Remarks on Some Nonparametric
Estimates of a Density Function. The Annals of Math-
ematical Statistics, 27(3):832–837.
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D.,
Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., and
Joliot, M. (2002). Automated anatomical labeling of
activations in {SPM} using a macroscopic anatomi-
cal parcellation of the {MNI} {MRI} single-subject
brain. NeuroImage, 15(1):273 – 289.
Weiss, N., Rueckert, D., and Rao, A. (2013). Multiple
sclerosis lesion segmentation using dictionary learn-
ing and sparse coding. In Medical Image Computing
and Computer-Assisted Intervention - MICCAI, pages
735–742.
Wilke, M., Rose, D. F., Holland, S. K., and Leach, J. L.
(2014). Multidimensional morphometric 3d mri anal-
yses for detecting brain abnormalities in children: Im-
pact of control population. Human Brain Mapping,
35(7):3199–3215.
Wyman, B. T., Harvey, D. J., Crawford, K., Bernstein,
M. A., Carmichael, O., Cole, P. E., Crane, P. K., De-
Carli, C., Fox, N. C., Gunter, J. L., Hill, D., Killiany,
R. J., Pachai, C., Schwarz, A. J., Schuff, N., Senjem,
M. L., Suhy, J., Thompson, P. M., Weiner, M., and Jr.,
C. R. J. (2013). Standardization of analysis sets for
reporting results from ADNI MRI data. Alzheimer’s
& Dementia, 9(3):332 – 337.
Probability-based Scoring for Normality Map in Brain MRI Images from Normal Control Population
263