region-based representation for segmentation and fil-
tering with depth in single images. Image Processing
(ICIP), 2009 16th, 1:3533–3536.
Dwork, C., Kumar, R., Naor, M., and Sivakumar, D. (2001).
Rank aggregation methods for the web. In Proceed-
ings of the 10th international conference on World
Wide Web, pages 613–622. ACM.
Eigen, D., Puhrsch, C., and Fergus, R. (2014). Depth map
prediction from a single image using a multi-scale
deep network. In Advances in Neural Information
Processing Systems, pages 2366–2374.
Esedoglu, S. and March, R. (2003). Segmentation with
depth but without detecting junctions. Journal of
Mathematical Imaging and Vision, 18(1):7–15.
Gao, R., Wu, T., Zhu, S., and Sang, N. (2007). Bayesian
inference for layer representation with mixed markov
random field. Energy Minimization Methods in Com-
puter Vision and Pattern Recognition, 4679:213–224.
Guzm
´
an, A. (1968). Decomposition of a visual scene into
three-dimensional bodies. In Proceedings of the De-
cember 9-11, 1968, fall joint computer conference,
part I, pages 291–304. ACM.
Hoiem, D., Efros, A., and Hebert, M. (2011). Recovering
Occlusion Boundaries from an Image. International
Journal of Computer Vision, 91(3):328–346.
Jia, Z., Gallagher, A., Chang, Y., and Chen, T. (2012).
A learning-based framework for depth ordering. In
Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, pages 294–301. IEEE.
Kanizsa, G. (1979). Organization in vision: essays on
Gestalt perception. NY, Praeger.
Liu, B., Gould, S., and Koller, D. (2010). Single image
depth estimation from predicted semantic labels. In
Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 1253–1260. IEEE.
Malik, J. (1987). Interpreting line drawings of curved
objects. International Journal of Computer Vision,
73403.
Marr, D. (1982). Vision: A computational approach. San
Francisco: Free-man & Co.
Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001).
A database of human segmented natural images and
its application to evaluating segmentation algorithms
and measuring ecological statistics. In Proc. 8th Int’l
Conf. Computer Vision, volume 2, pages 416–423.
Matheron, G. (1968). Mod
`
ele s
´
equentiel de partition
al
´
eatoire. Technical report, CMM.
McDermott, J. (2004). Psychophysics with junctions in real
images. Perception, 33(9):1101–1127.
Nitzberg, M. and Mumford, D. (1990). The 2.1-d sketch.
In Computer Vision, 1990. Proceedings, Third Inter-
national Conference on, pages 138–144. IEEE.
Nitzberg, M., Mumford, D., and Shiota, T. (1993). Filter-
ing, segmentation, and depth, volume 662. Lecture
notes in computer science, Springer.
Palou, G. and Salembier, P. (2011). Occlusion-based depth
ordering on monocular images with binary partition
tree. In Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on,
pages 1093–1096. IEEE.
Palou, G. and Salembier, P. (2013). Monocular depth or-
dering using t-junctions and convexity occlusion cues.
IEEE Transactions on Image Processing, 22(5):1926–
1939.
Pao, H., Geiger, D., and Rubin, N. (1999). Measuring con-
vexity for figure/ground separation. In Computer Vi-
sion, 1999. The Proceedings of the Seventh IEEE In-
ternational Conference on, volume 2, pages 948–955.
IEEE.
Rubin, N. (2001). Figure and ground in the brain. Nature
Neuroscience, 4:857–858.
Santner, J., Pock, T., and Bischof, H. (2010). Interactive
multi-label segmentation. In Proceedings 10th Asian
Conference on Computer Vision (ACCV), Queen-
stown, New Zealand.
Saxena, A., Chung, S. H., and Ng, A. Y. (2008). 3-d depth
reconstruction from a single still image. International
journal of computer vision, 76(1):53–69.
Serra, J. (1986). Introduction to mathematical morphology,
volume 35(3). Elsevier.
Zeng, Q., Chen, W., Wang, H., Tu, C., Cohen-Or, D.,
Lischinski, D., and Chen, B. (2015). Hallucinating
stereoscopy from a single image. In Computer Graph-
ics Forum, volume 34, pages 1–12. Wiley Online Li-
brary.
Monocular Depth Ordering using Perceptual Occlusion Cues
441