evaluating whether a solution of the system of the lin-
ear equations exists uniquely. Experimental results
demonstrated that the method estimated accurately
and robustly the parameter values of local curvilinear
structure in given images, and that the estimated val-
ues of parameters obtained the method describe accu-
rately and robustly the curvilinear structures in given
3D medical images.
Future works include to develop a method that
can describe local appearances using the other model
functions that is not the Gaussian function, e.g., the
Gabor function and the wavelet, and that can auto-
matically select an appropriate model function at each
location from a set of the model function.
ACKNOWLEDGEMENTS
This work was supported by JSPS Grant-in-Aid for
Scientific Research on Innovative Areas (Multidis-
ciplinary Computational Anatomy) JSPS KAKENHI
Grant Number, 26108003.
REFERENCES
Ando, S. and Nara, T. (2009). An exact direct method
of sinusoidal parameter estimation derived from finite
Fourier integral of differential equation. IEEE Trans.
Signal Process., 57(9):3317–3329.
Chuang, G. C.-H. and Kuo, C.-C. (1996). Wavelet descrip-
tor of planar curves: theory and applications. IEEE
Trans. Image Process., 5(1):56–70.
Cootes, T., Taylor, C., Cooper, D., and Graham, J. (1995).
Active shape models – their training and application.
Comput. Vis. Image Understanding, 61(1):38 – 59.
Engan, K., Aase, S. O., and H˚akon Husøy, J. (1999).
Method of optimal directions for frame design. In
Proc., IEEE Int’l Conf. Acoustics, Speech, and Signal
Process., volume 5, pages 2443–2446.
Freeman, W. T. and Adelson, E. H. (1991). The design
and use of steerable filters. IEEE Trans. Pattern Anal.
Mach. Intell., 13(9):891–906.
Goto, H. and Hontani, H. (2013). A weighted integral
method for parametrically describing local image ap-
pearance. IPSJ Trans. Comput. Vis. Appl., 5:70–74.
Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes:
Active contour models. Int’l J. Comput. Vis., 1(4):
321–331.
Kimia, B. B., Frankel, I., and Popescu, A.-M. (2003). Eu-
ler spiral for shape completion. Int’l J. Comput. Vis.,
54(1-3):159–182.
Lindeberg, T. (1994). Scale-Space Theory in Computer Vi-
sion. Kluwer Academic Publishers.
Lindeberg, T. (1998). Edge detection and ridge detection
with automatic scale selection. Int’l J. Comput. Vis.,
30(2):117–156.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Proc., IEEE Int’l Conf. Comput.
Vis., volume 2, pages 1150–1157.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. Int’l J. Comput. Vis., 60(2):91–
110.
Papari, G. and Petkov, N. (2011). Edge and line oriented
contour detection: State of the art. Image Vis. Com-
puting, 29(2-3):79 – 103.
Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S.,
Koller, T., Gerig, G., and Kikinis, R. (1998). Three-
dimensional multi-scale line filter for segmentation
and visualization of curvilinear structures in medical
images. Medical Image Anal., 2(2):143–168.
Si, Z. and Zhu, S. (2012). Learning hybrid image templates
(HIT) by information projection. IEEE Trans. Pattern
Anal. Mach. Intell., 34(7):1354–1367.
Starck, J.-L., Cand`es, E. J., and Donoho, D. L. (2002). The
curvelet transform for image denoising. IEEE Trans.
Image Process., 11(6):670–684.
Tamrakar, A. and Kimia, B. B. (2007). No grouping left
behind: From edges to curve fragments. In IEEE Int’l
Conf. Comput. Vis., pages 1–8.
Woiselle, A., Starck, J.-L., and Fadili, J. (2011). 3-D data
denoising and inpainting with the low-redundancy fast
curvelet transform. J. Math. Imaging Vis., 39(2):121–
139.
Zhu, S., Shi, K., and Si, Z. (2010). Learning explicit and
implicit visual manifolds by information projection.
Pattern Recognition Letters, 31(8):667–685.