A Directed Concept Search Environment to Visually Explore Texts Related to User-defined Concept Models

Muhammad Faisal Cheema, Stefan Jänicke, Judith Blumenstein, Gerik Scheuermann

2016

Abstract

We introduce a concept search environment that caters for the needs of humanities scholars who want to improve the accuracy of search results when querying historical text corpora. For this purpose, we designed a so-called Concept Editor that allows to model historical concepts in a diagram style according to the imaginations of the humanities scholar. For the inspection of results determined in the proposed concept search, we provide a Concept Search Results Viewer that uses the existent layout of the underlying concept model to visualize related texts according to the relevance to the given concept. We further designed the overall system the way that the humanities scholar can iteratively refine the concept idea, which leads to a gradual improvement of search results. To illustrate the whole development pipeline, we provide a usage scenario on modeling the concept epilepsy with the purpose of improving the accuracy of results compared to usual applied keyword-based search methods.

References

  1. (2015). Bibliotheca Teubneriana Latina. Walter de Gruyter. http://www.degruyter.com/db/btl (accessed March 19, 2015).
  2. (2015). Perseus Digital Library. Ed. Gregory R. Crane. Tufts University. http://www.perseus.tufts.edu (accessed March 19, 2015).
  3. Alexander, E., Kohlmann, J., Valenza, R., Witmore, M., and Gleicher, M. (2014). Serendip: Topic Model-Driven Visual Exploration of Text Corpora. In Visual Analytics Science and Technology (VAST), 2014 IEEE Conference on, pages 173-182.
  4. Baeza-Yates, R., Ribeiro-Neto, B., et al. (1999). Modern Information Retrieval, volume 463. ACM press New York.
  5. Bah, T. (2009). Inkscape: Guide to a Vector Drawing Program (Digital Short Cut). Pearson Education.
  6. Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3:993-1022.
  7. Booch, G., Rumbaugh, J., and Jacobson, I. (2005). Unified Modeling Language User Guide, The (2nd Edition) (Addison-Wesley Object Technology Series). AddisonWesley Professional.
  8. Budd, J. W. (2004). Mind Maps as Classroom Exercises. The Journal of Economic Education, 35(1):35-46.
  9. Cui, W., Liu, S., Tan, L., Shi, C., Song, Y., Gao, Z., Qu, H., and Tong, X. (2011). TextFlow: Towards Better Understanding of Evolving Topics in Text. Visualization and Computer Graphics, IEEE Transactions on, 17(12):2412-2421.
  10. Cui, W., Liu, S., Wu, Z., and Wei, H. (2014). How Hierarchical Topics Evolve in Large Text Corpora. Visualization and Computer Graphics, IEEE Transactions on, 20(12):2281-2290.
  11. Dou, W., Wang, X., Skau, D., Ribarsky, W., and Zhou, M. (2012). LeadLine: Interactive visual analysis of text data through event identification and exploration. In Visual Analytics Science and Technology (VAST), 2012 IEEE Conference on, pages 93-102.
  12. Eisenstein, J., Sun, I., and Klein, L. F. (2014). Exploratory Thematic Analysis for Historical Newspaper Archives. In Proceedings of the Digital Humanities 2014.
  13. Fernández, M., Cantador, I., López, V., Vallet, D., Castells, P., and Motta, E. (2011). Semantically enhanced information retrieval: an ontology-based approach. Web Semantics: Science, Services and Agents on the World Wide Web, 9(4):434-452.
  14. Giunchiglia, F., Kharkevich, U., and Zaihrayeu, I. (2009). Concept search. In The Semantic Web: Research and Applications, pages 429-444. Springer.
  15. Guha, R., McCool, R., and Miller, E. (2003). Semantic search. In Proceedings of the 12th International Conference on World Wide Web, WWW 7803, pages 700- 709, New York, NY, USA. ACM.
  16. Hager, P. J., Scheiber, H. J., and Corbin, N. C. (1997). Designing & Delivering: Scientific, Technical, and Managerial Presentations. John Wiley & Sons.
  17. Jähnichen, P., Oesterling, P., Liebmann, T., Heyer, G., Kuras, C., and Scheuermann, G. (2015). Exploratory Search Through Interactive Visualization of Topic Models. In Proceedings of the Digital Humanities 2015.
  18. Jänicke, S., Blumenstein, J., Rücker, M., Zeckzer, D., and Scheuermann, G. (2015a). Visualizing the Results of Search Queries on Ancient Text Corpora with Tag Pies. Digital Humanities Quarterly. To appear.
  19. Jänicke, S., Franzini, G., Cheema, M. F., and Scheuermann, G. (2015b). On Close and Distant Reading in Digital Humanities: A Survey and Future Challenges. In Borgo, R., Ganovelli, F., and Viola, I., editors, Eurographics Conference on Visualization (EuroVis) - STARs. The Eurographics Association.
  20. Kanter, B. (2015). Cambodia4kids.org. https://www.flickr.com/photos/cambodia4kidsorg/ 6195211411 (Retrieved 2015-11-25).
  21. Kaufman, M. (2015). 'Everything on Paper Will Be Used Against Me': Quantifying Kissinger. In Proceedings of the Digital Humanities 2015.
  22. Koch, S., John, M., Worner, M., Muller, A., and Ertl, T. (2014). VarifocalReader - In-Depth Visual Analysis of Large Text Documents. Visualization and Computer Graphics, IEEE Transactions on, 20(12):1723- 1732.
  23. Margolis, E. and Laurence, S. (2014). Concepts. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy. Spring 2014 edition.
  24. Montague, J., Simpson, J., Rockwell, G., Ruecker, S., and Brown, S. (2015). Exploring Large Datasets with Topic Model Visualizations. In Proceedings of the Digital Humanities 2015.
  25. Navigli, R. (2009). Word sense disambiguation: a survey. ACM Computing Surveys (CSUR), 41(2):10.
  26. Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., Gatford, M., et al. (1995). Okapi at TREC-3. NIST SPECIAL PUBLICATION SP, pages 109-109.
  27. Teevan, J., Alvarado, C., Ackerman, M. S., and Karger, D. R. (2004). The perfect search engine is not enough: A study of orienteering behavior in directed search. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 7804, pages 415- 422, New York, NY, USA. ACM.
  28. Wallach, H. M. (2006). Topic Modeling: Beyond Bag-ofWords. In Proceedings of the 23rd international conference on Machine learning, pages 977-984. ACM.
  29. Ware, C. (2010). Visual Thinking for Design. Morgan Kaufmann.
  30. Yi, J. S., Melton, R., Stasko, J., and Jacko, J. A. (2005). Dust & Magnet: multivariate information visualization using a magnet metaphor. Information Visualization, 4(4):239-256.
Download


Paper Citation


in Harvard Style

Cheema M., Jänicke S., Blumenstein J. and Scheuermann G. (2016). A Directed Concept Search Environment to Visually Explore Texts Related to User-defined Concept Models . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: IVAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 72-83. DOI: 10.5220/0005727400720083


in Bibtex Style

@conference{ivapp16,
author={Muhammad Faisal Cheema and Stefan Jänicke and Judith Blumenstein and Gerik Scheuermann},
title={A Directed Concept Search Environment to Visually Explore Texts Related to User-defined Concept Models},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: IVAPP, (VISIGRAPP 2016)},
year={2016},
pages={72-83},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005727400720083},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: IVAPP, (VISIGRAPP 2016)
TI - A Directed Concept Search Environment to Visually Explore Texts Related to User-defined Concept Models
SN - 978-989-758-175-5
AU - Cheema M.
AU - Jänicke S.
AU - Blumenstein J.
AU - Scheuermann G.
PY - 2016
SP - 72
EP - 83
DO - 10.5220/0005727400720083