Computer Vision and Pattern Recognition (CVPR
2004)
, II-1002-II-1009, Vol.2, 1002-1009
Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.,
2005. Neighbourhood components analysis.
Advances
in Neural Information Processing Systems
, 17, 103-
110
Grubinger, M., 2007. Analysis and evaluation of visual
information systems performance. PhD thesis, Victoria
University, Melbourne, Australia
Guillaumin, M., Mensink, T., Verbeek, J., Schmid, C.,
2009. Tagprop: Discriminative metric learning in
nearest neighbor models for image auto-annotation,
IEEE 12th International Conference on Computer
Vision. 309-316
Jin, C., Guo, J.L., 2014. Image semantic annotation
approach based on the feature matching. Springer,
Advances in Intelligent Systems and Computing,
Vol.250, 281-288
Jin, C. Jin, S.W., 2015. Automatic image annotation using
feature selection based on improving quantum particle
swarm optimization.
Signal Processing, 109, 172-181
Jin, C., Liu, J.A., Guo, J.L., 2015. A hybrid model based
on mutual information and support vector machine for
automatic image annotation. Artificial Intelligence
Perspectives and Applications. Springer, 347, 29-38
Lasmar, N.E., Berthoumieu, Y., 2014. Gaussian copula
multivariate modeling for texture image retrieval using
wavelet transforms. IEEE Transactions on Image
Processing, 23(5), 2246-2261
Liu, S., Yan, S.C., Zhang, T.Z., Xu, C.S., Liu, J., Lu, H.Q.,
2012. Weakly supervised graph propagation towards
collective image parsing,
IEEE Transactions on
Multimedia
, 14(2), 361-373
Makadia, A., Pavlovic, V., Kumar, S., 2008. A new
baseline for image annotation. Computer Vision–
ECCV 2008. Springer Berlin Heidelberg, 316-329
Nakayama, H., 2011. Linear distance metric learning for
large-scale generic image recognition. PhD thesis,
The
University of Tokyo
, Japan
Nguyen, C.T., Kaothanthong, N., Tokuyama, T., Phan,
X.H., 2013. A feature-word-topic model for image
annotation and retrieval. ACM Transactions on the
Web
, 7(3), 1-12
Rahmani, R., Goldman, S., 2006. Missl: Multiple-instance
semi-supervised learning, International Conference on
Machine Learning, 705-712
Shi, J., Malik, J., 2000. Normalized cuts and image
segmentation.
IEEE Transactions on Pattern Analysis
and Machine Intelligence
, 22(8), 888-905
Von Ahn, L., Dabbis, L., 2004. Labeling images with a
computer game.
SIGCHI Conference on Human
Factors in Computing Systems
. ACM, 319-326
Wang, C., Zhang, L., Zhang, H.J., 2008. Learning to
reduce the semantic gap in web image retrieval and
annotation.
The 31st International ACM SIGIR
Conference on Research and Development in
Information Retrieval
, Singapore, 355-362
Watcharapinchai, N., Aramvith, S., Siddhichai, S., 2011.
Two-probabilistic latent semantic model for image
annotation and retrieval,
Lecture Notes in Computer
Science
, vol.6468, 359-369
Yashaswi, V., Jawahar, C.V., 2012. Image annotation
using metric learning in semantic neighbourhoods.
ECCV(3), 836-849
Zhou, D., Bousquet, O., Lal, T.N., et al., 2004. Learning
with local and global consistency.
Advances in
Neural Information Processing Systems
, 16(16), 321-
328
Zhuang, Y., Liu, X., Pan, Y., 1999. Apply semantic
template to support content-based image retrieval.
Lecture Notes in Computer Science. 3972, 442-449