Table 3: Comparison of regional and basic protocols in terms of sent messages and computational time.
Fixed-time DVR Reg. DVR TDVR Reg. TDVR LSR Reg. LSR TLSR Reg. TLSR
Messages (#/RC/iter.) 0 1437 133 1463 133 35 25 35 24
Runtime (s) 10 360 105 1400 400 280 270 330 370
Table 4: Travel time of regional and basic protocols for the regional scenario.
DVR Reg. DVR TDVR Reg. TDVR LSR Reg. LSR TLSR Reg. TLSR
Undisturbed: Travel time [s/veh] 119.83 119.27 119.49 119.30 119.73 119.76 119.39 121.68
Disturbed: Travel time [s/veh] 127.83 128.44 128.41 127.15 128.69 129.14 129.00 130.18
but also during free flow conditions. The communi-
cational overhead and the computational costs can be
reduced by partitioning a larger network into smaller
sub-networks via the Border-Gateway-Protocol.
REFERENCES
Barcelo, J. and Casas, J. (2002). Dynamic network simu-
lation with AIMSUN. In Proc. of the Int. Symp. on
Transp. Simul., pages 1–25. Kluwer.
Claes, R., Holvoet, T., and Weyns, D. (2011). A decen-
tralized approach for anticipatory vehicle routing us-
ing delegate multiagent systems. IEEE Trans. on Int.
Transp. Systems, 12:364–373.
Dijkstra, E. W. (1959). A note on two problems in connex-
ion with graphs. Numerische Mathematik, 1(1):269–
271.
Dong, J., Mahmassani, H., and Lu, C.-C. (2006). How reli-
able is this route: Predictive travel time and reliability
for anticipatory traveler information systems. Journal
of the Transp. Research Board, (1980):117–125.
Dong, W. (2011). An overview of in-vehicle route guidance
system. 34th Australasian Transp. Research Forum
(ATRF 2011), Adelaide, Australia, 28-30 Sept. 2011.
Emmerink, R. H. M., Nijkamp, P., and Rietveld, P. (1996).
Variable message signs and radio traffic informa-
tion, an integrated empirical analysis of drivers route
choice behaviour. In Transp. Research Part A: Policy
and Practice, volume 30, pages 135–153.
Erke, A., Sagberg, F., and Hagman, R. (2007). Effects of
route guidance variable message signs (vms) on driver
behaviour. Transp. Research Part F: Traffic Psychol-
ogy and Behaviour, 10(6):447 – 457.
F.S. Zuurbier, J. v. L. and van Zuylen, H. (2006). Com-
parison study of decentralized feedback strategies for
route guidance purposes. In Proc. of the 9th TRAIL
Congress, pages 1–15.
Fu, L. (2001). An adaptive routing algorithm for in-vehicle
route guidance systems with real-time information.
Transp. Research Part B, 35(8):749–765.
Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal
basis for the heuristic determination of minimum cost
paths. IEEE Trans. on Systems Science and Cybernet-
ics, 4(2):100–107.
Horst F. Wedde et al. (2007). Highly Dynamic and Adap-
tive Traffic Congestion Avoidance in Real-Time In-
spired by Honey Bee Behavior. In Mobilit
¨
at und
Echtzeit – Fachtagung der GI-Fachgruppe Echtzeit-
systeme, pages 21–31. Springer.
Hyndman, R. J. and Koehler, A. B. (2006). Another look at
measures of forecast accuracy. International Journal
of Forecasting, pages 679–688.
Kaplan, E. (2005). Understanding GPS - Principles and
applications. Artech House, 2nd edition edition.
Nannicini, G., Delling, D., Schultes, D., and Liberti, L.
(2012). Bidirectional a* search on time-dependent
road networks. Netw., 59(2):240–251.
Panis, L. I., Broekx, S., and Liu, R. (2006). Modelling in-
stantaneous traffic emission and the influence of traf-
fic speed limits. Science of The Total Environment,
371(13):270 – 285.
Parkany, E. and Xie, P. C. (2005). A complete review of in-
cident detection algorithms & their deployment: What
works and what doesn’t. Technical report, Fall River,
MA: New England Transp. Consortium.
Prothmann, H., Tomforde, S., Branke, J., H
¨
ahner, J.,
M
¨
uller-Schloer, C., and Schmeck, H. (2011). Organic
Traffic Control. In Organic Computing – A Paradigm
Shift for Complex Systems, chapter 5.1, pages 431–
446. Birkh
¨
auser.
Prothmann, H., Tomforde, S., Lyda, J., Branke, J., H
¨
ahner,
J., M
¨
uller-Schloer, C., and Schmeck, H. (2012). Self-
organised routing for road networks. In Proc. of the
6. Int. Workshop on Self-Organizing Systems, LNCS
7166, pages 48–59. Springer.
Schmitt, E. J. and Jula, H. (2006). Vehicle route guidance
systems: classification and comparison. 2006 IEEE
Intelligent Transp. Systems Conference, 1:242–247.
Sommer, M., Tomforde, S., H
¨
ahner, J., and Auer, D. (2015).
Learning a dynamic re-combination strategy of fore-
cast techniques at runtime. In Proc. of IEEE Int. Conf.
on Autonomic Computing (ICAC), pages 261–266.
Tanenbaum, A. S. (2002). Computer Networks. Pearson,
4th edition.
Tomforde, S., Prothmann, H., Branke, J., H
¨
ahner, J.,
M
¨
uller-Schloer, C., and Schmeck, H. (2010). Pos-
sibilities and limitations of decentralised traffic con-
trol systems. In IEEE World Congress on Comp. Int.,
pages 3298–3306. IEEE.
Webster, F. V. (1958). Traffic signal settings. Road Research
Technical Paper No. 39, Road Research Laboratory,
England, HMSO.
Wunderlich, K. E., Kaufman, D. E., and Smith, R. L.
(2000). Link travel time prediction for decentralized
route guidance architectures. IEEE Transactions on
Intelligent Transp. Systems, 1(1):4–14.
VEHITS 2016 - International Conference on Vehicle Technology and Intelligent Transport Systems
186