4 CONCLUSIONS
In this work, numerical simulations of a PhC MZ
modulator based on a-Si:H and working at 1.55 µm,
are reported. Our FDTD numerical simulations show
that taking advantage from both the tunability
property of the a-Si:H physical parameters and the
strong optical beam confinement within a PhCW, a
more efficient phase shifting can be obtained in the
interferometric structure. Our results show that the
FoM is enhanced of an order of magnitude with
respect to our previously realized active device based
on the electrically induced free carrier dispersion
effect. In fact, by reverse biasing the vertical p-i-n
diode integrated into the PhCWs, 1.5 mm-long, we
achieved a reduction of the V
π
×L voltage-length from
40 to 4.5 V×cm and we predicted as much reduction
for sub-micron waveguide core thickness. Moreover,
the corresponding PhC fabrication process does not
require sophisticated technological facilities leading
therefore to a truly low cost technology.
REFERENCES
Vlasov, Y. et al., 2005. Active control of slow light on a
chip with photonic crystal waveguides. Nature,
438(7064), pp.65–69.
Reed, G. T. et al., 2010. Silicon optical modulators. Nature
Photonics 4 (8), pp.518 – 526.
Della Corte, F.G. & Rao, S., 2013. Use of amorphous
silicon for active photonic devices. IEEE Transactions
on Electron Devices, 60(5), pp.1495–1505.
Rao, S. et al., 2012. A 2.5 ns switching time Mach-Zehnder
modulator in as-deposited a-Si:H. Optics Express,
20(9), p.9351.
Zelikson, M. et al., 1992. Enhanced electro-optic effect in
amorphous hydrogenated silicon based waveguides.
Applied Physics Letters 61(14), pp.1664–6.
Zelikson, M. et al., 1996. Direct determination of the
quadratic electro-optic coefficient in an α-Si:H based
waveguide. J. Non-Cryst. Solids 198–200, pp.107–10.
Della Corte, F.G. et al. 2008. Electro-optically induced
absorption in a-Si:H/a-SiCN waveguiding multistacks.
Optics Express, 16(10), pp.7540-7550.
Rao, S. et al., 2010. Electrooptical Modulating Device
Based on a CMOS-Compatible a-Si:H/a- SiCN
Multistack Waveguide. IEEE Journal of Selected
Topics in Quantum Electronics, 16(1), pp.173–178.
Della, F.G. et al., Hydrogenated amorphous silicon multi-
SOI waveguide modulator with low voltage – length
product.
Rao, S. et al., 2014. Progress towards a high-performing a-
Si:H-based electro-optic modulator. Journal of Optics,
16(5), p.055501.
Della Corte, F.G. et al., 2011. Electro-optical modulation at
1550 nm in an as-deposited hydrogenated amorphous
silicon p-i-n waveguiding device. Optics express, 19(4),
pp.2941–2951.
Rao, S. & Della Corte, F.G., 2014. Numerical analysis of
electro-optical modulators based on the amorphous
silicon technology. Journal of Lightwave Technology,
32(13), pp.2399–2407.
Brimont, A. et al., 2011. High speed silicon electro-optical
modulators enhanced via slow light propagation. ,
19(21), pp.21986–21991.
Brimont, A. et al., 2009. Strong electro-optical modulation
enhancement in a slow wave corrugated waveguide.
Optics express, 17(11), pp.9204–9211.
Mekis, A. et al., 1996. High Transmission through Sharp
Bends in Photonic Crystal Waveguides. Physical
Review Letters, 77(18), pp.3787–3790.
Johnson, S.G. et al., 1998. Elimination of cross talk in
waveguide intersections. Opt. Lett. 23, pp.1855-1857.
RSoft Photonics CAD Layout User Guide, Rsoft Design
Group, Inc. Physical Layer Division, 200 Executive
Blvd. Ossining, NY 10562.
Cocorullo, G. et al., 1996. Amorphous silicon waveguides
and light modulators for integrated photonics realised
by low-temperature plasma enhanced chemical vapour
deposition. Optics Letters, 21(24), pp.2002-2004.
Rao, S., 2013. Hydrogenated amorphous silicon phase-
change device based on a p–i–p waveguiding
configuration. Optics & Laser Technology 53, pp.17-21.
Chen, X. et al., 2009. Electrooptically-active slow-light-
enhanced silicon slot photonic crystal waveguides.
IEEE Journal on Selected Topics in Quantum
Electronics, 15(5), pp.1506–1508.
Rao, S. et al., 2013. Electro-optical effect in hydrogenated
amorphous silicon-based waveguide-integrated p-i-p
and p-i-n configurations. Optical Engineering, 52(8),
p.087110.
Rao, S. & Della Corte, F.G., 2012. 1.55 m Silicon-Based
Reflection-Type Waveguide-Integrated Thermo-Optic
2×2 Switch. Optik - International Journal for Light and
Electron Optics, 123(5), pp.467–469.
Rao, S. et al., 2010. Electro-optically induced absorption in
α-Si:H/α-SiCN waveguiding multistacks. Journal of the
European Optical Society, 5, pp.10002.
Rao, S., &Della Corte, F.G., 2010. Electro-optical
modulating multistack device based on the CMOS-
compatible technology of amorphous silicon”, Journal
of the European Optical Society, 5, pp.10040.
Rao, S. et al., 2010. Low-loss amorphous silicon
waveguides grown by PECVD on indium tin oxide.
Journal of the European Optical Society, 5, pp.10039.
Rao, S., Della Corte, F.G. & Summonte, C., 2012.
Amorphous silicon waveguides grown by PECVD on
an Indium Tin Oxide buried contact. Optics
Communications, 285(13-14), pp.3088–3092.
Rao, S. et al., 2012. All-optical modulation in a CMOS-
compatible amorphous silicon-based device. Journal of
the European Optical Society, 7, pp.12023.