their visited location will not be changed drastically
over short periods especially if we utilized their past
check-ins.
REFERENCES
Abel, F., Gao, Q., Houben, G.-j., & Tao, K. (2011).
Analyzing User Modeling on Twitter for Personalized
News Recommendations. Em User Modeling, Adaption
and Personalization (pp. 1-12).
Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A.
(2013). Recommender systems survey. Knowledge-
Based Systems, 46, 109-132.
Chandra, S., Khan, L., & Muhaya, F. (2011). Estimating
twitter user location using social interactions--a content
based approach. 2011 IEEE Third Int'l Conference on
Privacy, Security, Risk and Trust and 2011 IEEE Third
Int'l Conference on Social Computing (pp. 838-843).
IEEE.
Cheng, Z., Caverlee, J., & Lee, K. (2010). You are where
you tweet: a content-based approach to geo-locating
twitter users. Proceedings of the 19th ACM
international conference on Information and
knowledge management (pp. 759-768). ACM.
Cho, E., Myers, S., & Leskovec, J. (2011). Friendship and
mobility: user movement in location-based social
networks. Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and
data mining (pp. 1082-1090). ACM.
Dalvi, N., Kumar, R., & Pang, B. (2012). Object matching
in tweets with spatial models. Proceedings of the fifth
ACM international conference on Web search and data
mining (pp. 43-52). ACM.
Galal, A., & ElKorany, A. (2015). Dynamic Modeling of
Twitter Users. Proceedings of the 17th International
Conference on Enterprise Information Systems, 2, pp.
585-593. Barcelona, Spain.
Gao, H., & Liu, H. (2014). Data analysis on location-based
social networks. Em Mobile social networking (pp.
165-194). Springer.
Hecht, B., Hong, L., Suh, B., & Chi, E. (2011). Tweets from
Justin Bieber's heart: the dynamics of the location field
in user profiles. Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (pp. 237-
246). ACM.
Jamali, S., & Rangwala, H. (2009). Digging digg: Comment
mining, popularity prediction, and social network
analysis. WISM 2009. International Conference on Web
Information Systems and Mining (pp. 32-38). IEEE.
Kleanthous, S., & Dimitrova, V. (2008). Modelling
Semantic Relationships and Centrality to Facilitate
Community Knowledge Sharing. Em Adaptive
Hypermedia and Adaptive Web-Based Systems (pp.
123-132). Springer Berlin Heidelberg.
Lee, M.-j., & Chung, C.-w. (2011). A User Similarity
Calculation Based on the Location for Social Network
Services. 16th international conference on Database
systems for advanced applications, (pp. 38-52).
Li, N., & Chen, G. (2009). Analysis of a location-based
social network. CSE'09. International Conference on
Computational Science and Engineering. 4, pp. 263-
270. IEEE.
Mahmud, J., Nichols, J., & Drews, C. (2014). Home
location identification of twitter users. ACM
Transactions on Intelligent Systems and Technology
(TIST), 5(3), 47.
Quercia, D., Askham, H., & Crowcroft, J. (2012).
TweetLDA : Supervised Topic Classification and Link
Prediction in Twitter. Proceedings of the 3rd Annual
ACM Web Science Conference, (pp. 247-250).
Ryoo, K., & Moon, S. (2014). Inferring Twitter user
locations with 10 km accuracy. Proceedings of the
companion publication of the 23rd international
conference on World wide web companion (pp. 643-
648). International World Wide Web Conferences
Steering Committee.
Wang, J., & Prabhala, B. (2012). Periodicity based next
place prediction. Nokia Mobile Data Challenge 2012
Workshop. p. Dedicated task, Vol. 2. No. 2. .
Weerkamp, W., & De Rijke, M. (2012). Activity prediction:
A twitter-based exploration. SIGIR Workshop on Time-
aware Information Access.
Witten, I. H., & Frank, E. (2005). Data Mining: Practical
machine learning tools and techniques. Morgan
Kaufmann.
Ye, J., Zhu, Z., & Cheng, H. (2013). What’s your next
move: User activity prediction in location-based social
networks. Proceedings of the SIAM International
Conference on Data Mining. SIAM.
Gangemi, A. (2013) 'A Comparison of Knowledge
Extraction Tools for the Semantic Web', in The
Semantic Web: Semantics and Big Data, Springer
Berlin Heidelberg, pp.351-366.