sults show that the system behaves like an expert, and
that regression methods perform better in both scales.
Future work will tackle the study of the evolution
of a patient, allowing us to measure the ratio of ap-
pearance of new vessels and other associated changes
that occur in the conjunctiva.
REFERENCES
Aha, D. W., Kibler, D., and Albert, M. K. (1991).
Instance-based learning algorithms. Machine learn-
ing, 6(1):37–66.
Baum, E. B. (1988). On the capabilities of multilayer per-
ceptrons. Journal of complexity, 4(3):193–215.
Breiman, L. (2001). Random forests. Machine learning,
45(1):5–32.
Buhmann, M. D. (2000). Radial basis functions. Acta Nu-
merica 2000, 9:1–38.
Canny, J. (1986). A computational approach to edge detec-
tion. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, (6):679–698.
Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library
for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27.
Cooper, G. F. and Herskovits, E. (1991). A bayesian
method for constructing bayesian belief networks
from databases. In Proceedings of the Seventh con-
ference on Uncertainty in Artificial Intelligence, pages
86–94. Morgan Kaufmann Publishers Inc.
Efron, N., Morgan, P. B., and Katsara, S. S. (2001). Valida-
tion of grading scales for contact lens complications.
Ophthalmic and Physiological Optics, 21(1):17–29.
Fieguth, P. and Simpson, T. (2002). Automated measure-
ment of bulbar redness. Investigative Ophthalmology
and Visual Science, 43(2):340–347.
Friedman, N., Geiger, D., and Goldszmidt, M. (1997).
Bayesian network classifiers. Machine learning, 29(2-
3):131–163.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The weka data min-
ing software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18.
Hastie, T., Tibshirani, R., et al. (1998). Classification by
pairwise coupling. The annals of statistics, 26(2):451–
471.
Holte, R. C. (1993). Very simple classification rules per-
form well on most commonly used datasets. Machine
learning, 11(1):63–90.
Jensen, F. V. (1996). An introduction to Bayesian networks,
volume 210. UCL press London.
John, G. H. and Langley, P. (1995). Estimating continuous
distributions in bayesian classifiers. In Proceedings
of the Eleventh conference on Uncertainty in artificial
intelligence, pages 338–345. Morgan Kaufmann Pub-
lishers Inc.
Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., and
Murthy, K. R. K. (2001). Improvements to platt’s smo
algorithm for svm classifier design. Neural Computa-
tion, 13(3):637–649.
Kohavi, R. (1995). The power of decision tables. In Ma-
chine Learning: ECML-95, pages 174–189. Springer.
Papas, E. B. (2000). Key factors in the subjective and objec-
tive assessment of conjunctival erythema. Investiga-
tive Ophthalmology and Visual Science, 41(3):687–
691.
Platt, J. et al. (1999). Fast training of support vector ma-
chines using sequential minimal optimization. Ad-
vances in kernel methodssupport vector learning, 3.
Quinlan, J. R. (2014). C4. 5: programs for machine learn-
ing. Elsevier.
Quinlan, J. R. et al. (1992). Learning with continuous
classes. In 5th Australian joint conference on artificial
intelligence, volume 92, pages 343–348. Singapore.
Rodriguez, J. D., Johnston, P. R., Ousler III, G. W., Smith,
L. M., and Abelson, M. B. (2013). Automated grad-
ing system for evaluation of ocular redness associated
with dry eye. Clinical ophthalmology (Auckland, NZ),
7:1197.
Rolando, M. and Zierhut, M. (2001). The ocular surface
and tear film and their dysfunction in dry eye disease.
Survey of Ophthalmology, 45, Supplement 2(0):S203
– S210.
S´anchez, L., Barreira, N., Garc´ıa-Res´ua, C., and Yebra-
Pimentel, E. (2015a). Automatic selection of video
frames for hyperemia grading. Eurocast 2015, pages
165–166.
S´anchez, L., Barreira, N., Pena-Verdeal, H., and Yebra-
Pimentel, E. (2015b). A novel framework for hyper-
emia grading based on artificial neural networks. In
Advances in Computational Intelligence, pages 263–
275. Springer.
Schulze, M. M., Jones, D. A., and Simpson, T. L. (2007).
The development of validated bulbar redness grading
scales. Optometry & Vision Science, 84(10):976–983.
Smola, A. J. and Sch¨olkopf, B. (2004). A tutorial on
support vector regression. Statistics and computing,
14(3):199–222.
V´azquez, S. G., Barreira, N., Penedo, M. G., Pena-Seijo,
M., and G´omez-Ulla, F. (2013). Evaluation of SIRIUS
retinal vessel width measurement in REVIEW dataset.
In Proceedings of the 26th IEEE International Sym-
posium on Computer-Based Medical Systems, Porto,
Portugal, June 20-22, 2013, pages 71–76.
Wang, Y. and Witten, I. H. (1996). Induction of model trees
for predicting continuous classes.
Wolffsohn, J. S. and Purslow, C. (2003). Clinical monitor-
ing of ocular physiology using digital image analysis.
Contact Lens and Anterior Eye, 26(1):27–35.
Yoneda, T., Sumi, T., Takahashi, A., Hoshikawa, Y.,
Kobayashi, M., and Fukushima, A. (2012). Auto-
mated hyperemia analysis software: reliability and re-
producibility in healthy subjects. Japanese journal of
ophthalmology, 56(1):1–7.