Prize Collecting Travelling Salesman Problem - Fast Heuristic Separations

Kamyar Khodamoradi, Ramesh Krishnamurti

2016

Abstract

The Prize Collecting Travelling Salesman Problem (PCTSP) is an important generalization of the famous Travelling Salesman Problem. It also arises as a sub problem in many variants of the Vehicle Routing Problem. In this paper, we provide efficient methods to solve the linear programming relaxation of the PCTSP. We provide efficient heuristics to obtain the Generalized Subtour Elimination Constraints (GSECs) for the PCTSP, and compare its performance with an optimal separation procedure. Furthermore, we show that a heuristic to separate the primitive comb inequalities for the TSP can be applied to separate the primitive comb inequalities introduced for the PCTSP. We evaluate the effectiveness of these inequalities in reducing the integrality gap for the PCTSP.

References

  1. Balas, E. (1989). The prize collecting traveling salesman problem. Networks, 19(4):621-636.
  2. Balas, E. (1995). The prize collecting traveling salesman problem ii: Polyhedral results. Networks, 25(4):199- 216.
  3. Bérubé, J.-F., Gendreau, M., and Potvin, J.-Y. (2009). A branch-and-cut algorithm for the undirected prize collecting traveling salesman problem. Networks, 54(1):56-67.
  4. Cappanera, P., Gouveia, L., and Scutellà, M. G. (2011). The skill vehicle routing problem. In Proceedings of the 5th International Conference on Network Optimization, 2011, number LNCS 6701, pages 354-364. SpringerVerlag.
  5. Chaves, A. A. and Lorena, L. A. N. (2008). Hybrid metaheuristic for the prize collecting travelling salesman problem. In Proceedings of the EvoCOP 2008, number LNCS 4972, pages 123-134. Springer-Verlag.
  6. Crowder, H. and Padberg, M. W. (1980). Solving large-scale symmetric travelling salesman problems to optimality. Management Science, 26:495-509.
  7. Fischetti, M., Salazar, J. J., and Toth, P. (1997). A branch-and-cut algorithm for the symmetric generalized travelling salesman problem. Operations Research, 45(3):378-393.
  8. Fischetti, M. and Toth, P. (1988). An additive approach for the optimal solution of the prize-collecting travelling salesman problem. In Golden, B. L. and Assad, A. A., editors, Vehicle routing: Methods and studies, pages 319-343. Elsevier Science Publishers.
  9. Goemans, M. X. (1994). The steiner polytope and related polyhedra. Mathematical Programming, 63:157-182.
  10. Gutin, G. and Punnen, A. P., editors (2002). The Traveling Salesman Problem and its Variations. Combinatorial optimization. Kluwer Academic, Dordrecht, London.
  11. Hong, S. (1972). A Linear Programming Approach for the Traveling Salesman Problem. PhD thesis, John Hopkins University, Baltimore, Maryland, USA.
  12. Land, A. (1979). The solution of some 100-city travelling salesman problems. Technical report, London School of Economics, London, UK.
  13. Padberg, M. W. and Hong, S. (1980). On the symmetric traveling salesman problem: a computational study. Mathematical Programming Study, 12:778-107.
  14. Reinelt, G. (1991). Tsplib: A traveling salesman problem library. ORSA J. Comput., pages 376-384.
  15. Wolsey, L. A. (1998). Integer programming. Wiley interscience series in discrete mathematics and optimization. Wiley.
Download


Paper Citation


in Harvard Style

Khodamoradi K. and Krishnamurti R. (2016). Prize Collecting Travelling Salesman Problem - Fast Heuristic Separations . In Proceedings of 5th the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-758-171-7, pages 380-387. DOI: 10.5220/0005758103800387


in Bibtex Style

@conference{icores16,
author={Kamyar Khodamoradi and Ramesh Krishnamurti},
title={Prize Collecting Travelling Salesman Problem - Fast Heuristic Separations},
booktitle={Proceedings of 5th the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2016},
pages={380-387},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005758103800387},
isbn={978-989-758-171-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of 5th the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - Prize Collecting Travelling Salesman Problem - Fast Heuristic Separations
SN - 978-989-758-171-7
AU - Khodamoradi K.
AU - Krishnamurti R.
PY - 2016
SP - 380
EP - 387
DO - 10.5220/0005758103800387