lems by electronic mail. Journal of the Operational
Research Society, 41:1069–1072.
Bienstock, D. (1995). Computational study of a family of
mixed-integer quadratic programming problems. In
Integer Programming and Combinatorial Optimiza-
tion, volume 920 of Lecture Notes in Computer Sci-
ence, pages 80–94. Springer Berlin Heidelberg.
Bonami, P. and Lejeune, M. A. (2009). An exact solu-
tion approach for portfolio optimization problems un-
der stochastic and integer constraints. Operations Re-
search, 57(3):650–670.
Borchers, B. and Mitchell, J. E. (1997). A computational
comparison of branch and bound and outer approxi-
mation algorithms for 01 mixed integer nonlinear pro-
grams. Computers & Operations Research, 24(8):699
– 701.
Chang, T.-J., Meade, N., Beasley, J., and Sharaiha, Y.
(2000). Heuristics for cardinality constrained portfo-
lio optimisation. Computers & Operations Research,
27(13):1271 – 1302.
Chen, A., Liang, Y.-C., and Liu, C.-C. (2012). An
artificial bee colony algorithm for the cardinality-
constrained portfolio optimization problems. In 2012
IEEE Congress on Evolutionary Computation (CEC),
pages 1–8.
Cura, T. (2009). Particle swarm optimization approach
to portfolio optimization. Nonlinear Analysis: Real
World Applications, 10(4):2396 – 2406.
Di Gaspero, L., Di Tollo, G., Roli, A., and Schaerf,
A. (2011). Hybrid metaheuristics for constrained
portfolio selection problems. Quantitative Finance,
11(10):1473–1487.
Di Tollo, G. and Roli, A. (2008). Metaheuristics for the
portfolio selection problem. International Journal of
Operationas Research, 5(1):13–35.
Fernandez, A. and Gomez, S. (2007). Portfolio selection
using neural networks. Computers & Operations Re-
search, 34(4):1177 – 1191.
Golmakani, H. R. and Fazel, M. (2011). Constrained port-
folio selection using particle swarm optimization. Ex-
pert Systems with Applications, 38(7):8327 – 8335.
Jansen, R. and van Dijk, R. (2002). Optimal benchmark
tracking with small portfolios. The Journal of Portfo-
lio Management, 28(2):33–39.
Jin, Y., Qu, R., and Atkin, J. (2014). A population-based
incremental learning method for constrained portfolio
optimisation. In Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC), 2014 16th Inter-
national Symposium on, pages 212–219.
Jobst, N., Horniman, M., Lucas, C., and Mitra, G. (2001).
Computational aspects of alternative portfolio selec-
tion models in the presence of discrete asset choice
constraints. Quantitative Finance, 1(5):489–501.
Kellerer, H., Mansini, R., and Speranza, M. (2000). Se-
lecting portfolios with fixed costs and minimum trans-
action lots. Annals of Operations Research, 99(1-
4):287–304.
Lin, C.-C. and Liu, Y.-T. (2008). Genetic algorithms for
portfolio selection problems with minimum transac-
tion lots. European Journal of Operational Research,
185(1):393 – 404.
Lwin, K., Qu, R., and Kendall, G. (2014). A learning-
guided multi-objective evolutionary algorithm for
constrained portfolio optimization. Applied Soft Com-
puting, 24:757 – 772.
Mansini, R. and Speranza, M. G. (1999). Heuristic algo-
rithms for the portfolio selection problem with min-
imum transaction lots. European Journal of Opera-
tional Research, 114(2):219 – 233.
Maringer, D. (2008). Heuristic optimization for portfolio
management [application notes]. Computational In-
telligence Magazine, IEEE, 3(4):31 –34.
Maringer, D. and Kellerer, H. (2003). Optimization of
cardinality constrained portfolios with a hybrid local
search algorithm. OR Spectrum, 25(4):481–495.
Markowitz, H. (1952). Portfolio selection. The Journal of
Finance, 7(1):pp. 77–91.
Metaxiotis, K. and Liagkouras, K. (2012). Multiobjective
evolutionary algorithms for portfolio management: A
comprehensive literature review. Expert Systems with
Applications, 39(14):11685 – 11698.
Ruiz-Torrubiano, R. and Suarez, A. (2010). Hybrid ap-
proaches and dimensionality reduction for portfolio
selection with cardinality constraints. Computational
Intelligence Magazine, IEEE, 5(2):92–107.
Schaerf, A. (2002). Local search techniques for constrained
portfolio selection problems. Computational Eco-
nomics, 20:177–190.
Skolpadungket, P., Dahal, K., and Harnpornchai, N. (2007).
Portfolio optimization using multi-objective genetic
algorithms. In Evolutionary Computation, 2007. CEC
2007. IEEE Congress on, pages 516–523.
Speranza, M. G. (1996). A heuristic algorithm for a portfo-
lio optimization model applied to the milan stock mar-
ket. Computers & Operations Research, 23(5):433 –
441.
Streichert, F., Ulmer, H., and Zell, A. (2004). Evaluating a
hybrid encoding and three crossover operators on the
constrained portfolio selection problem. In Evolution-
ary Computation, 2004. CEC2004. Congress on, vol-
ume 1, pages 932–939.
Vijayalakshmi Pai, G. and Michel, T. (2009). Evolution-
ary optimization of constrained k -means clustered as-
sets for diversification in small portfolios. Evolution-
ary Computation, IEEE Transactions on, 13(5):1030–
1053.
Woodside-Oriakhi, M., Lucas, C., and Beasley, J. (2011).
Heuristic algorithms for the cardinality constrained ef-
ficient frontier. European Journal of Operational Re-
search, 213(3):538 – 550.
Xu, R.-t., Zhang, J., Liu, O., and Huang, R.-Z. (2010).
An estimation of distribution algorithm based portfo-
lio selection approach. In Technologies and Applica-
tions of Artificial Intelligence (TAAI), 2010 Interna-
tional Conference on, pages 305–313.
Constrained Portfolio Optimisation: The State-of-the-Art Markowitz Models
395