tern Analysis and Machine Intelligence, IEEE Trans-
actions on, (99).
Attanasi, A., Cavagna, A., Del Castello, L., Giardina, I.,
Melillo, S., Parisi, L., Pohl, O., Rossaro, B., Shen, E.,
Silvestri, E., et al. (2014). Collective behaviour with-
out collective order in wild swarms of midges. PLoS
computational biology, 10(7):e1003697.
Butail, S., Paley, D., et al. (2010). 3d reconstruction of
fish schooling kinematics from underwater video. In
Robotics and Automation (ICRA), 2010 IEEE Interna-
tional Conference on, pages 2438–2443. IEEE.
Cheng, X. E., Qian, Z.-M., Wang, S. H., Jiang, N., Guo, A.,
and Chen, Y. Q. (2015). A novel method for tracking
individuals of fruit fly swarms flying in a laboratory
flight arena. PloS one, 10(6):e0129657.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein,
C. (2009). Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition.
Dell, A. I., Bender, J. A., Branson, K., Couzin, I. D.,
de Polavieja, G. G., Noldus, L. P., P
´
erez-Escudero, A.,
Perona, P., Straw, A. D., Wikelski, M., et al. (2014).
Automated image-based tracking and its application
in ecology. Trends in ecology & evolution, 29(7):417–
428.
Ess, A., Schindler, K., Leibe, B., and Van Gool, L. (2010).
Object detection and tracking for autonomous navi-
gation in dynamic environments. The International
Journal of Robotics Research, 29(14):1707–1725.
Giardina, I. (2008). Collective behavior in animal groups:
theoretical models and empirical studies. HFSP jour-
nal, 2(4):205–219.
Hampapur, A., Brown, L., Connell, J., Ekin, A., Haas, N.,
Lu, M., and Pankanti, S. (2005). Smart video surveil-
lance: exploring the concept of multiscale spatiotem-
poral tracking. Signal Processing Magazine, IEEE,
22(2):38–51.
Hartley, R. I. and Zisserman, A. (2004). Multiple View Ge-
ometry in Computer Vision. Cambridge University
Press, ISBN: 0521540518, second edition.
Michel, P., Chestnutt, J., Kagami, S., Nishiwaki, K.,
Kuffner, J., and Kanade, T. (2007). Gpu-accelerated
real-time 3d tracking for humanoid locomotion and
stair climbing. In Intelligent Robots and Systems,
2007. IROS 2007. IEEE/RSJ International Conference
on, pages 463–469. IEEE.
Moussaid, M., Guillot, E. G., Moreau, M., Fehren-
bach, J., Chabiron, O., Lemercier, S., Pettr
´
e, J.,
Appert-Rolland, C., Degond, P., and Theraulaz, G.
(2012). Traffic instabilities in self-organized pedes-
trian crowds. PLoS Comput. Biol, 8(3):e1002442.
Ouellette, N. T., Xu, H., and Bodenschatz, E. (2006).
A quantitative study of three-dimensional lagrangian
particle tracking algorithms. Experiments in Fluids,
40(2):301–313.
P
´
erez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda,
S., and de Polavieja, G. G. (2014). idtracker: tracking
individuals in a group by automatic identification of
unmarked animals. Nature methods, 11(7):743–748.
Puckett, J. G., Kelley, D. H., and Ouellette, N. T. (2014).
Searching for effective forces in laboratory insect
swarms. Scientific reports, 4.
Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 22(8):888–905.
Sobral, A. and Bouwmans, T. (2014). Bgs library:
A library framework for algorithms evaluation in
foreground/background segmentation. In Back-
ground Modeling and Foreground Detection for Video
Surveillance. CRC Press, Taylor and Francis Group.
Stockman, G. and Shapiro, L. G. (2001). Computer Vision.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st
edition.
Straw, A. D., Branson, K., Neumann, T. R., and Dick-
inson, M. H. (2010). Multi-camera real-time three-
dimensional tracking of multiple flying animals. Jour-
nal of The Royal Society Interface, page rsif20100230.
Vacchetti, L., Lepetit, V., and Fua, P. (2004). Combining
edge and texture information for real-time accurate 3d
camera tracking. In Mixed and Augmented Reality,
2004. ISMAR 2004. Third IEEE and ACM Interna-
tional Symposium on, pages 48–56. IEEE.
Wu, Z., Hristov, N. I., Kunz, T. H., and Betke, M.
(2009). Tracking-reconstruction or reconstruction-
tracking? comparison of two multiple hypothesis
tracking approaches to interpret 3d object motion
from several camera views. In Motion and Video Com-
puting, 2009. WMVC’09. IEEE Workshop on, pages
1–8. IEEE.
Wu, Z., Kunz, T. H., and Betke, M. (2011). Efficient track
linking methods for track graphs using network-flow
and set-cover techniques. In Computer Vision and Pat-
tern Recognition (CVPR), 2011 IEEE Conference on,
pages 1185–1192. IEEE.
Towards a Tracking Algorithm based on the Clustering of Spatio-temporal Clouds of Points
687