Camg
¨
oz, N., Yener, C., and G
¨
uven
c¸
, D. (2004). Effects
of hue, saturation, and brightness: Part 2: Attention.
Color Research & Application, 29(1):20–28.
Chu, D., Sheets, D., Zhao, Y., Wu, Y., Yang, J., Zheng, M.,
and Chen, G. (2014). Visualizing hidden themes of
taxi movement with semantic transformation. In Pa-
cific Visualization Symposium (PacificVis), 2014 IEEE,
pages 137–144.
Dunne, C. and Shneiderman, B. (2013). Motif simplifica-
tion: Improving network visualization readability with
fan, connector, and clique glyphs. In Proc. SIGCHI
Conference on Human Factors in Computing Systems,
pages 3247–3256. ACM.
Fairchild, M. D. and Johnson, G. M. (2004). iCAM frame-
work for image appearance, differences, and quality.
Journal of Electronic Imaging, 13(1):126–138.
Ferreira, N., Poco, J., Vo, H. T., Freire, J., and Silva, C. T.
(2013). Visual exploration of big spatio-temporal ur-
ban data: A study of new york city taxi trips. IEEE
Transactions on Visualization and Computer Graphics,
19(12):2149–2158.
Hillier, B. (2002). A theory of the city as object: or, how
spatial laws mediate the social construction of urban
space. Urban Design International, 7(3):153–179.
Hillier, B. (2007). Space is the machine: a configurational
theory of architecture. Cambridge University Press,
Cambridge.
Jiang, B. (2007). A topological pattern of urban street net-
works: universality and peculiarity. Physica A: Statis-
tical Mechanics and its Applications, 384(2):647–655.
Keim, D. (2000). Designing pixel-oriented visualization
techniques: Theory and applications. IEEE Transac-
tions on Visualization and Computer Graphics, 6(1):59–
78.
Kindlmann, G., Reinhard, E., and Creem, S. (2002). Face-
based luminance matching for perceptual colormap
generation. In Proceedings of the conference on Visu-
alization, pages 299–306. IEEE Computer Society.
Kropf, K. (2009). Aspects of urban form. Urban Morphol-
ogy, 13(2):105–120.
Liu, Y., Zhang, D., Lu, G., and Ma, W.-Y. (2007). A sur-
vey of content-based image retrieval with high-level
semantics. Pattern Recognition, 40(1):262–282.
Marshall, S. (2004). Streets and patterns. London and New
York: Spon Press.
Marshall, S. (2008). Route structure analysis: A system of
representation, calculation and graphical presentation.
Working Paper.
Mittelst
¨
adt, S., J
¨
ackle, D., Stoffel, F., and Keim, D. A. (2015).
ColorCAT: Guided Design of Colormaps for Combined
Analysis Tasks. In Proc. of the Eurographics Confer-
ence on Visualization (EuroVis 2015: Short Papers),
pages 115–119.
Mittelst
¨
adt, S., Stoffel, A., and Keim, D. A. (2014). Meth-
ods for Compensating Contrast Effects in Information
Visualization. Computer Graphics Forum, 33(3):231–
240.
Oelke, D., Janetzko, H., Simon, S., Neuhaus, K., and Keim,
D. A. (2011). Visual boosting in pixel-based visualiza-
tions. In Computer Graphics Forum, volume 30, pages
871–880. Wiley Online Library.
Omer, I. and Zafrir-Reuven, O. (2010). Street patterns and
spatial integration of israeli cities. The Journal of Space
Syntax, 1(2):295.
Pettit, C., Widjaja, I., Russo, P., Sinnott, R., Stimson, R., and
Tomko, M. (2012). Visualisation support for explor-
ing urban space and place. In XXII ISPRS Congress,
Technical Commission IV, volume 25.
Porta, S., Crucitti, P., and Latora, V. (2006). The network
analysis of urban streets: a primal approach. Environ-
ment and Planning B: Planning and Design, 33:705–
725.
Shneiderman, B. (1996). The eyes have it: a task by data
type taxonomy for information visualizations. In Visual
Languages, 1996. Proceedings., IEEE Symposium on,
pages 336–343.
Tian, J., Ai, T., and Jia, X. (2012). Graph based recogni-
tion of grid pattern in street networks. In Advances
in Spatial Data Handling and GIS, Lecture Notes in
Geoinformation and Cartography, pages 129–143.
Turner, A. (2001). A program to perform visibility graph
analysis. In Proceedings of the 3rd Space Syntax Sym-
posium, Atlanta, University of Michigan, pages 31–1.
Vaughan, L., Jones, C. E., Griffiths, S., and Haklay, M. M.
(2010). The spatial signature of suburban town centres.
The Journal of Space Syntax, 1(1):77–91.
von Landesberger, T., G
¨
orner, M., Rehner, R., and Schreck,
T. (2009). A system for interactive visual analysis of
large graphs using motifs in graph editing and aggrega-
tion. In VMV’09, pages 331–340.
von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer,
J., van Wijk, J., Fekete, J.-D., and Fellner, D. (2011).
Visual analysis of large graphs: State-of-the-art and
future research challenges. Computer Graphics Forum,
30(6):1719–1749.
Wang, Z., Lu, M., Yuan, X., Zhang, J., and Van De Wetering,
H. (2013). Visual traffic jam analysis based on trajec-
tory data. Visualization and Computer Graphics, IEEE
Transactions on, 19(12):2159–2168.
Ware, C. (1988). Color sequences for univariate maps:
Theory, experiments and principles. IEEE Computer
Graphics and Applications, 8(5):41–49.
Wheeler, S. M. (2008). The evolution of built landscapes in
metropolitan regions. Journal of Planning Education
and Research, 27(4):400–416.
Yan, X., Zhu, F., Yu, P. S., and Han, J. (2006). Feature-
based similarity search in graph structures. ACM Trans.
Database Syst., 31(4):1418–1453.
Yang, B., Luan, X., and Zhang, Y. (2014). A pattern-based
approach for matching nodes in heterogeneous urban
road networks. Transactions in GIS, 18(5):718–739.
Yang, T. and Hillier, B. (2007). The fuzzy boundary: the
spatial definition of urban areas.
StreetExplorer: Visual Exploration of Feature-based Patterns in Urban Street Networks
97