to perform low resolution face recognition in the pres-
ence of variations such as illumination, occlusions
and pose. The presence of wavelet transform and lo-
cal binary pattern attributes to the proposed method’s
capability in nullifying variations in the face image
caused by illumination effects while the sparse fea-
ture representation and the Shepard’s similarity mea-
sure based nearest neighbour classification provided
the efficient elimination of data outliers. The pro-
posed technique can find application in image recog-
nising situations demanding the use of low resolution
image, limited storage and low power smart devices.
REFERENCES
Ahonen, T., Hadid, A., and Pietikainen, M. (2006). Face
description with local binary patterns: Application to
face recognition. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, 28(12):2037–2041.
Baker, S. and Kanade, T. (2000). Hallucinating faces. In
Automatic Face and Gesture Recognition, 2000. Pro-
ceedings. Fourth IEEE International Conference on,
pages 83–88. IEEE.
Cover, T. and Hart, P. (1967). Nearest neighbor pattern clas-
sification. Information Theory, IEEE Transactions on,
13(1):21–27.
Field, D. J. (1999). Wavelets, vision and the statistics of nat-
ural scenes. Philosophical Transactions of the Royal
Society of London. Series A: Mathematical, Physical
and Engineering Sciences, 357(1760):2527–2542.
Freeman, W. T., Pasztor, E. C., and Carmichael, O. T.
(2000). Learning low-level vision. International jour-
nal of computer vision, 40(1):25–47.
Gao, R. X. and Yan, R. (2010). Wavelets: Theory and appli-
cations for manufacturing. Springer Science & Busi-
ness Media.
Kasinski, A., Florek, A., and Schmidt, A. (2008). The
put face database. Image Processing and Communi-
cations, 13(3-4):59–64.
Kim, K. I., Jung, K., and Kim, H. J. (2002). Face recogni-
tion using kernel principal component analysis. Signal
Processing Letters, IEEE, 9(2):40–42.
Lai, J. and Jiang, X. (2012). Modular weighted global
sparse representation for robust face recognition. Sig-
nal Processing Letters, IEEE, 19(9):571–574.
Lee, K., Ho, J., and Kriegman, D. (2005). Acquiring linear
subspaces for face recognition under variable light-
ing. IEEE Trans. Pattern Anal. Mach. Intelligence,
27(5):684–698.
Li, B., Chang, H., Shan, S., and Chen, X. (2010). Low-
resolution face recognition via coupled locality pre-
serving mappings. Signal Processing Letters, IEEE,
17(1):20–23.
Liu, Q., Huang, R., Lu, H., and Ma, S. (2002). Face recog-
nition using kernel-based fisher discriminant analysis.
In Automatic Face and Gesture Recognition, 2002.
Proceedings. Fifth IEEE International Conference on,
pages 197–201. IEEE.
Mallat, S. (1999). A wavelet tour of signal processing. Aca-
demic press.
Marciniak, T., Dabrowski, A., Chmielewska, A., and Wey-
chan, R. (2012). Face recognition from low resolution
images. In Multimedia Communications, Services and
Security, pages 220–229. Springer.
Martinez, A. M. (1998). The ar face database. CVC Tech-
nical Report, 24.
Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Mul-
tiresolution gray-scale and rotation invariant texture
classification with local binary patterns. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
24(7):971–987.
Patel, V. M., Chen, Y.-C., Chellappa, R., and Phillips, P. J.
(2014). Dictionaries for image and video-based face
recognition. J. Opt. Soc. Am. A, 31(5):1090–1103.
Pietik
¨
ainen, M. (2010). Local binary patterns. Scholarpe-
dia, 5(3):9775.
Shepard, R. N. (1987). Toward a universal law of
generalization for psychological science. Science,
237(4820):1317–1323.
Sudhakaran, S. and James, A. P. (2015). Sparse distributed
localized gradient fused features of objects. Pattern
Recognition, 48(4):1534–1542.
Turk, M. A. and Pentland, A. P. (1991). Face recogni-
tion using eigenfaces. In Computer Vision and Pat-
tern Recognition, 1991. Proceedings CVPR’91., IEEE
Computer Society Conference on, pages 586–591.
IEEE.
Xu, X., Liu, W., and Li, L. (2014). Low resolution face
recognition in surveillance systems. Journal of Com-
puter and Communications, 2(02):70.
Zhang, B.-L., Zhang, H., and Ge, S. S. (2004). Face recog-
nition by applying wavelet subband representation and
kernel associative memory. Neural Networks, IEEE
Transactions on, 15(1):166–177.
Zou, W. and Yuen, P. (2010). Very low resolution face
recognition problem. In Biometrics: Theory Appli-
cations and Systems (BTAS), 2010 Fourth IEEE Inter-
national Conference on, pages 1–6.
Low Resolution Sparse Binary Face Patterns
193