calculate the contours. Area / volume of the heated
regions are calculated from the corresponding
contours. Our results show the capability of such
solution which can be applied in other domain for
any specific purpose. The main advantage of such a
system is that, it uses only passive sensors for
measurement, so it can be deployable in outdoor
environment. We also analysed computation time
and this shows the solution runs in near real-time.
The heated area or volume measurements with
closed container show different heat profile. The
heat flow also has a great effect on heat profile.
These types of works are considered as further
improvement of the entire system.
REFERENCES
http://www.flir.com.hk/flirone/
P. Deshpande, V. R. Reddy, A. Saha, K. Vaiapury, K.
Dewangan, R. Dasgupta, (2015). A Next Generation
Mobile Robot with Multi-mode Sense of 3D
Perception. IEEE International Conference on
Advanced Robotics (ICAR), pp. 382 - 387
DOI:10.1109/ICAR.2015.7251484
D. Borrmann, A. Nuchter, M. Dakulovic, I. Maurovic, I.
Petrovic, D. Osmankovic, and J. Velagic, (2012). The
project ThermalMapper thermal 3D mapping of indoor
environments for saving energy. In Proc. of the 10th
International IFAC Symposium on Robot Control
(SYROCO), vol. 10.
S. Vidas, P. Moghadam and M. Bosse, (2013). 3D thermal
mapping of building interiors using an RGB-D and
thermal camera. In Proc. of IEEE International
Conference on Robotics and Automation.
http://www.microsoft.com/en-us/kinectforwindows/
M. Meilland and A. Comport, (2013). Super-resolution 3D
Tracking and Mapping. In IEEE Intl. Conf. on
Robotics and Automation.
T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and M.
J.B., (2013). Robust real-time visual odometry for
dense RGB-D mapping. In IEEE Intl. Conf. on
Robotics and Automation (ICRA).
R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O.
Hilliges, J. Shotton, D. Molyneaux, S. Hodges, D.
Kim, and A. Fitzgibbon, (2011). KinectFusion: Real-
time dense surface mapping and tracking. In Proc.
ISMAR.
A. B. Krishnan and J. Kollipara, (2014). Intelligent indoor
mobile robot navigation using stereo vision. Signal &
Image Processing: An International Journal (SIPIJ),
Vol.5, No.4.
A. Saha, B. Bhowmick and A. Sinha, (2014). A system for
near real-time 3D reconstruction from multi-view
using 4G enabled mobile. IEEE International
Conference on Mobile Services (MS), pp. 1-7,
doi:10.1109/MobServ.2014.10.
S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R.
Szeliski, (2006). A comparison and evaluation of
multi-view stereo reconstruction algorithms. In Proc.
IEEE Conf. on Computer Vision and Pattern
Recognition.
Y. Furukawa and J. Ponce, (2010). Accurate, dense, and
robust multiview stereopsis. In Proc. IEEE Trans.
Pattern Anal. Machine Intell., vol. 32, no. 8, pp. 1362–
1376.
V. Pradeep, C. Rhemann, S. Izadi, C. Zach, M. Bleyer and
S. Bathiche, (2013). MonoFusion: Real-time 3D
reconstruction of small scenes with a single web
camera. The 13th IEEE International Symposium on
Mixed and Augmented Reality.
M. Pizzoli, C. Forster and D. Scaramuzza, (2003).
REMODE: Probabilistic, monocular dense
reconstruction in real time. In Proc. IEEE International
Conference on Robotics and Automation (ICRA).
R. Hartley and A. Zisserman, (2003). Multiple view
geometry in computer vision. ISBN 0-521-54051-8,
Cambridge University Press.
Z. Zhang., (2000). A flexible new technique for camera
calibration. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(11):1330-1334.
B. Bhowmick, A. Mallik and A. Saha, (2014).
Mobiscan3D: A low cost framework for real time
dense 3d reconstruction on mobile devices. Iin Proc. of
The 11th IEEE International Conference on
Ubiquitous Intelligence and Computing.
H. Hirschmuller and D. Scharstein, (2009). Evaluation of
stereo matching costs on images with radiometric
differences. IEEE Trans. Pattern Anal. Machine Intell.,
vol. 31, no. 9.
T. Brox and J. Malik, (2011). Large displacement optical
flow: descriptor matching in variational motion
estimation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(3):500-513.
N. Sundaram, T. Brox and K. Keutzer, (2010). Dense
point trajectories by GPU-accelerated large
displacement optical flow. European Conference on
Computer Vision (ECCV), Crete, Greece, Springer,
LNCS.
K. Dewangan, A. Saha, K. Vaiapury, R. Dasgupta, (2015).
3D Environment Reconstruction using Mobile Robot
Platform & Monocular Vision. 9th International
Conference on Advanced Computing &
Communication Technologies (ICACCT).