Future aspects of this work include working on a
region of interest for grouping and binding the obsta-
cles. This allow detecting all obstacles apart of the
perpendicular obstacles to the stereo camera plane.
Another future element to consider is to accumulate
the environment information from several frames, to
enrich the environment representation.
ACKNOWLEDGEMENTS
This work was supported by the Spanish Government
through the CICYT projects (TRA2013-48314-C3-1-
R) and Comunidad de Madrid through SEGVAUTO-
TRIES (S2013/MIT-2713).
REFERENCES
Bernini, N., Bertozzi, M., Castangia, L., Patander, M.,
and Sabbatelli, M. (2014). Real-time obstacle detec-
tion using stereo vision for autonomous ground vehi-
cles: A survey. In Intelligent Transportation Systems
(ITSC), 2014 IEEE 17th International Conference on,
pages 873–878. IEEE.
Broggi, A., Cappalunga, A., Caraffi, C., Cattani, S., Ghi-
doni, S., Grisleri, P., Porta, P., Posterli, M., Zani, P.,
and Beck, J. (2008). The passive sensing suite of the
terramax autonomous vehicle. In Intelligent Vehicles
Symposium, 2008 IEEE, pages 769–774. IEEE.
Cech, M., Niem, W., Abraham, S., and Stiller, C. (2004).
Dynamic ego-pose estimation for driver assistance in
urban environments. In Intelligent Vehicles Sympo-
sium, 2004 IEEE, pages 43–48. IEEE.
De Paula, M., Jung, C., et al. (2014). Automatic on-
the-fly extrinsic camera calibration of onboard ve-
hicular cameras. Expert Systems with Applications,
41(4):1997–2007.
Grey, P. (2012). Bumblebee: stereo vision camera systems.
Technical Description.
Guo, C., Mita, S., and McAllester, D. (2009). Drivable road
region detection using homography estimation and ef-
ficient belief propagation with coordinate descent op-
timization. In Intelligent Vehicles Symposium, 2009
IEEE, pages 317–323. IEEE.
Hold, S., Gormer, S., Kummert, A., Meuter, M., and
Muller-Schneiders, S. (2009a). A novel approach for
the online initial calibration of extrinsic parameters
for a car-mounted camera. In Intelligent Transporta-
tion Systems, 2009. ITSC’09. 12th International IEEE
Conference on, pages 1–6. IEEE.
Hold, S., Nunn, C., Kummert, A., and Muller-Schneiders,
S. (2009b). Efficient and robust extrinsic camera cal-
ibration procedure for lane departure warning. In In-
telligent Vehicles Symposium, 2009 IEEE, pages 382–
387. IEEE.
Hu, Z., Lamosa, F., and Uchimura, K. (2005). A complete
uv-disparity study for stereovision based 3d driving
environment analysis. In 3-D Digital Imaging and
Modeling, 2005. 3DIM 2005. Fifth International Con-
ference on, pages 204–211. IEEE.
Intelligence, S. S. (2006). Lms200/211/221/291 laser mea-
surement systems. Technical Description.
Labayrade, R. and Aubert, D. (2003). In-vehicle obstacles
detection and characterization by stereovision. Proc.
IEEE In-Vehicle Cognitive Comput. Vis. Syst, pages
1–3.
Li, S. and Hai, Y. (2011). Easy calibration of a blind-spot-
free fisheye camera system using a scene of a park-
ing space. Intelligent Transportation Systems, IEEE
Transactions on, 12(1):232–242.
Musleh, B., de la Escalera, A., and Armingol, J. M. (2011).
Real-time pedestrian recognition in urban environ-
ments. In Advanced Microsystems for Automotive Ap-
plications 2011, pages 139–147. Springer.
Musleh, B., de la Escalera, A., and Armingol, J. M. (2012).
Uv disparity analysis in urban environments. In Com-
puter Aided Systems Theory–EUROCAST 2011, pages
426–432. Springer.
Musleh, B., Martin, D., Armingol, J. M., and de la Escalera,
A. (2014). Continuous pose estimation for stereo vi-
sion based on uv disparity applied to visual odome-
try in urban environments. In Robotics and Automa-
tion (ICRA), 2014 IEEE International Conference on,
pages 3983–3988. IEEE.
Soquet, N., Perrollaz, M., Labayrade, R., Aubert, D., et al.
(2007). Free space estimation for autonomous navi-
gation. In 5th International Conference on Computer
Vision Systems.
Teoh, C., Tan, C., and Tan, Y. C. (2010). Ground plane de-
tection for autonomous vehicle in rainforest terrain. In
Sustainable Utilization and Development in Engineer-
ing and Technology (STUDENT), 2010 IEEE Confer-
ence on, pages 7–12. IEEE.
Thrun, S. (2001). Learning occupancy grids with forward
models. In Intelligent Robots and Systems, 2001. Pro-
ceedings. 2001 IEEE/RSJ International Conference
on, volume 3, pages 1676–1681 vol.3.
Thrun, S. (2003). Learning occupancy grid maps with for-
ward sensor models. Autonomous robots, 15(2):111–
127.
Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R.,
Clark, M., Dolan, J., Duggins, D., Galatali, T., Geyer,
C., et al. (2008). Autonomous driving in urban envi-
ronments: Boss and the urban challenge. Journal of
Field Robotics, 25(8):425–466.
VISAPP 2016 - International Conference on Computer Vision Theory and Applications
708