logical analysis problem. Such model will also incor-
porate the relationships between the predicted labels
values. These relationships are described in the deci-
sion tree in Figure 1. We believe that exploiting these
relationships will likely produce good results.
ACKNOWLEDGEMENTS
This research is partially funded by the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC). This support is greatly appreciated.
REFERENCES
Abazajian, K. N., Adelman-McCarthy, J. K., Ag
¨
ueros,
M. A., Allam, S. S., Prieto, C. A., An, D., Anderson,
K. S., Anderson, S. F., Annis, J., Bahcall, N. A., et al.
(2009). The seventh data release of the sloan digital
sky survey. The Astrophysical Journal Supplement Se-
ries, 182(2):543.
Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Good-
fellow, I. J., Bergeron, A., Bouchard, N., and Ben-
gio, Y. (2012). Theano: new features and speed im-
provements. Deep Learning and Unsupervised Fea-
ture Learning NIPS 2012 Workshop.
Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu,
R., Desjardins, G., Turian, J., Warde-Farley, D., and
Bengio, Y. (2010). Theano: a CPU and GPU math
expression compiler. In Proceedings of the Python for
Scientific Computing Conference (SciPy). Oral Pre-
sentation.
Bretzner, L. and Lindeberg, T. (1998). Feature tracking with
automatic selection of spatial scales. Computer Vision
and Image Understanding, 71(3):385–392.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09.
Dieleman, S., Willett, K. W., and Dambre, J. (2015).
Rotation-invariant convolutional neural networks for
galaxy morphology prediction. Monthly Notices of the
Royal Astronomical Society, 450(2):1441–1459.
Fukushima, K. (1980). Neocognitron: A self-organizing
neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biologi-
cal cybernetics, 36(4):193–202.
Glorot, X. and Bengio, Y. (2010). Understanding the diffi-
culty of training deep feedforward neural networks. In
International conference on artificial intelligence and
statistics, pages 249–256.
Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville,
A., and Bengio, Y. (2013). Maxout networks. arXiv
preprint arXiv:1302.4389.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delv-
ing deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. arXiv preprint
arXiv:1502.01852.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. (1989). Back-
propagation applied to handwritten zip code recogni-
tion. Neural computation, 1(4):541–551.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60(2):91–110.
Nair, V. and Hinton, G. E. (2010). Rectified linear units
improve restricted boltzmann machines. In Proceed-
ings of the 27th International Conference on Machine
Learning (ICML-10), pages 807–814.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., Berg, A. C., and Fei-Fei, L. (2015). Ima-
geNet Large Scale Visual Recognition Challenge. In-
ternational Journal of Computer Vision (IJCV), pages
1–42.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: A simple way
to prevent neural networks from overfitting. The Jour-
nal of Machine Learning Research, 15(1):1929–1958.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2014). Going deeper with convolutions.
arXiv preprint arXiv:1409.4842.
van der Walt, S., Sch
¨
onberger, J. L., Nunez-Iglesias, J.,
Boulogne, F., Warner, J. D., Yager, N., Gouillart,
E., Yu, T., and the scikit-image contributors (2014).
scikit-image: image processing in Python. PeerJ,
2:e453.
Willett, K. W., Lintott, C. J., Bamford, S. P., Masters, K. L.,
Simmons, B. D., Casteels, K. R., Edmondson, E. M.,
Fortson, L. F., Kaviraj, S., Keel, W. C., et al. (2013).
Galaxy zoo 2: detailed morphological classifications
for 304 122 galaxies from the sloan digital sky survey.
Monthly Notices of the Royal Astronomical Society,
page stt1458.
Zeiler, M. D. and Fergus, R. (2014). Visualizing and un-
derstanding convolutional networks. In Computer
Vision–ECCV 2014, pages 818–833. Springer.
VISAPP 2016 - International Conference on Computer Vision Theory and Applications
270