REFERENCES
Alberti, P. W. and Biagioni, E. (1972). Facial paralysis in
children. a review of 150 cases. The Laryngoscope,
82:1013–1020.
Bradski, G. (2000). The opencv library. Dr. Dobb’s Journal
of Software tools.
Breiman, L. (2001). Random trees. Machine Learning,
95(1):5–32.
Cootes, T., Edwards, G., and Taylor, C. (2001). Active ap-
pearance models. Transactions on Pattern Analysis
and Machine Intelligence, 23(6):681–685.
Coulson, S., Croxson, G., Adams, R., and O’Dwyer, N.
(2005). Reliability of the ”sydney,” ”sunnybrook,” and
”house brackmann” facial grading systems to assess
voluntary movement and synkinesis after facial nerve
paralysis. OtolaryngologyHead and Neck Surgery,
132(4):143–149.
de Ru, J., Braunius, W., van Benthem, P., Busschers, W.,
and Hordijk, G. (2006). Grading facial nerve function:
why a new grading system, the moress, should be pro-
posed. Otology and Neurotology, 27:1030–1036.
Delannoy, J. and Ward, T. (2010). A preliminary inves-
tigation into the use of machine vision techniques for
automating facial paralysis rehabilitation therapy. Sig-
nals and Systems Conference (ISSC), pages 228–232.
Ekman, P. and Friesen, W. (1978). Facial action coding sys-
tem: A technique for the measurement of facial move-
ment. Consulting Psychologists Press.
Gebhard, A., Paulus, D., Suchy, B., Fucak, I., Wolf, S.,
and Niemann, H. (2001). Automatische graduierung
von gesichtsparesen. In Bildverarbeitung fr die Medi-
zin 2001, Informatik aktuell, pages 352–356. Springer
Berlin Heidelberg.
Gebhard, A., Paulus, D., Suchy, B., and Wolf, S. (2000). A
system for diagnosis support of patients with facialis
paresis. German Journal on Artificial Intelligence, 3.
Guntinas-Lichius, O., Straesser, A., and Streppel, M.
(2007). Quality of life after facial nerve repair. The
Laryngoscope, 117(3):421–426.
Haase, D., Kemmler, M., Guntinas-Lichius, O., and Den-
zler, J. (2013). Efficient measuring of facial action unit
activation intensities using active appearance models.
Proceedings of the 13th IAPR International Confer-
ence on Machine Vision Applications (MVA), pages
141–144.
Haase, D., Minnigerode, L., Volk, G., Denzler, J., and
Guntinas-Lichius, O. (2015). Automated and objec-
tive action coding of facial expressions in patients
with acute facial palsy. European Archives of Oto-
Rhino-Laryngology, 272(5):1259–1267.
Haase, D., Nyakatura, J. A., and Denzler, J. (2014).
Comparative large-scale evaluation of human and ac-
tive appearance model based tracking performance
of anatomical landmarks in x-ray locomotion se-
quences. Pattern Recognition and Image Analysis
(PRIA), 24(1):86–92.
He, S., Soraghan, J., O’Reilly, B., and Dongshan, X. (2009).
Quantitative analysis of facial paralysis using local bi-
nary patterns in biomedical videos. Transactions on
Biomedical Engineering, 56(7).
House, J. and Brackmann, D. (1985). Facial nerve grad-
ing system. OtolaryngologyHead and Neck Surgery,
93:146–147.
Matthews, I. and Baker, S. (2004). Active appearance mod-
els revisited. International Journal of Computer Vi-
sion, 60(2):135–164.
Peitersen, E. (2002). Bell’s palsy: The spontaneous course
of 2,500 peripheral facial nerve palsies of different eti-
ologies. Acta Oto-Laryngologica, 122(7):4–30.
Song, I., Nguwi, Y., Vong, J., Diederich, J., and Yel-
lowlees, P. (2013). Profiling bell’s palsy based on
house-brackmann score. Symposium on Computa-
tional Intelligence in Healthcare and e-health (CI-
CARE), pages 1–6.
Song, Q., Montillo, A., Bhagalia, R., and Srikrishnan, V.
(2014). Organ localization using joint ap/lat view
landmark consensus detection and hierarchical active
appearance models. Medical Computer Vision. Large
Data in Medical Imaging, 8331:138–147.
Stennert, E., Limberg, C., and Frentrup, K. (1977).
Parese und defektheilungsindex; ein leicht anwend-
bares schema zur objektiven bewertung von thera-
pieerfolgen bei fazialisparesen. HNO, 25:238–245.
Vincent, G., Wolstenholme, C., Scott, I., and Bowes, M.
(2010). Fully automatic segmentation of the knee joint
using active appearance models. Medical Image Anal-
ysis for the Clinic: A Grand Challenge, pages 224–
230.
Wachtman, G., Cohn, J., VanSwearingen, J., and Manders,
E. (2001). Automated tracking of facial features in pa-
tients with facial neuromuscular dysfunction. Plastic
and Reconstructive Surgery, 107(5):1124–1133.
Wang, S. and Qi, F. (2005). Compute aided diagnosis
of facial paralysis based on pface. Engineering in
Medicine and Biology Society, pages 4353–4356.
VISAPP 2016 - International Conference on Computer Vision Theory and Applications
278