
Semi-Automatic Assessment Approach to Programming Code for
Novice Students

Selim Buyrukoglu, Firat Batmaz and Russell Lock

Department of Computer Science, Loughborough University, Epinal Way, Loughborough, U.K.

Keywords: Automatic Assessment, Programming Language, Intelligent Tutoring System, Online Assessment.

Abstract: Programming languages have been an integral element of the taught skills of many technical subjects in
Higher Education for the last half century. Moreover, secondary school students have also recently started
learning programming languages. This increase in the number of students learning programming languages
makes the efficient and effective assessment of student work more important. This research focuses on one
key approach to assessment using technology: the semi-automated marking of novice students’ program
code. The open-ended, flexible nature of programming ensures that no two significant pieces of code are
likely to be the same. However, it has been observed that there are a number of common code fragments
within these dissimilar solutions. This observation forms the basis of our proposed approach. The initial
research focuses on the ‘if’ structure to evaluate the theory behind the approach taken, which is appropriate
given its commonality across programming languages. The paper also discusses the results of real world
analysis of novice students’ programming code on ‘if’ structures. The paper concludes that the approach
taken could form a more effective and efficient method for the assessment of student coding assignments.

1 INTRODUCTION

Automation in the assessment of programming
exercises has become an important and also
increasingly complex consideration in the marking
of students’ programming exercises (Rubio-Sánchez,
2014). Many students learn programming languages
over a number of years of study. In recent years,
younger people have also started to learn
programming languages in Further Education (FE)
and secondary schools (Resnick et al., 2009) rather
than just in Higher Education (HE). Instead of using
general high-level languages such as Java or C++ to
teach younger, novice students, specialist languages
have been developed, with one of the more popular
being scratch (Meerbaum-Salant et al., 2013).

The manual programming assessment process is
not efficient for assessors, partly because it scales
linearly and suffers significant duplication of effort
given the commonality of many fragments of code
(Palmer et al., 2002). Many researchers therefore
focus on automatic assessment, because each
program could be assessed and analysed more
efficiently by computer if a computer could be
configured to do so (Ala-Mutka, 2005). Sharma et al.
(2014) indicated that students’ programming code

can be analysed dynamically or statically. In
dynamic analysis, each student’s program code is
executed and then the result is checked to ascertain
the correctness of the program. By contrast, during a
static analysis, the code is examined and evaluated
without running the program.

The purposes of automatic assessment systems
are different, and can be summative or formative.
Scriven, (1967) stated that at the end of the learning
period, students’ learning is measured and their own
achievement, which is reported through a summative
assessment. Melmer et al. (2008) specified that
formative assessment is directly related to the
enhancement of a student’s education based on
feedback. Students may understand their learning
more deeply through formative assessment (Clark,
2011). Assessment systems can assess syntax errors,
logic errors and semantic errors relating to the
source code. Syntax errors represent incorrect
statements in programming languages
(Kaczmarczyk et al., 2010). Semantic errors involve
programming code which is syntactically correct;
buy includes incorrect conditions (Schmidt, 2012).
Programs with logic errors run without faults but
produce incorrect results (Spohrer and Soloway,
2013).

Buyrukoglu, S., Batmaz, F. and Lock, R.
Semi-Automatic Assessment Approach to Programming Code for Novice Students.
In Proceedings of the 8th International Conference on Computer Supported Education (CSEDU 2016) - Volume 1, pages 289-297
ISBN: 978-989-758-179-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

289

Students’ programming assignments were mostly
assessed manually before the early 2000s (Cheang et
al., 2003). Within manual approaches to assessment,
each programming assignment is assessed only by a
human (Cheang et al., 2003). Both automatic and
manual assessments have some key advantages and
disadvantages. With automatic assessment, students
can expect to receive feedback in a shorter period of
time compared to that of manual assessment (Foxley
et al., 2001). However, automatic assessment
systems may return limited feedback, and are
heavily dependent on lecturing staff correctly
configuring systems with model solutions. Manual
assessment can be effective for students in terms of
detailed feedback if the examiner assesses students’
assignments as well; that is, if examiners focus on
the strengths and weaknesses of the students’
programming assignments, they can provide
comprehensive feedback. However, manual
assessment is an inefficient process, and can lead to
minor inconsistencies in commenting accuracy and
depth (Cheang et al., 2003). Jackson, (2000)
indicated that the merger of both automatic and
manual assessment is a beneficial solution, because
students’ programming assignments can be assessed
not only in a short time, but also with more detailed
feedback than if based on assessment by computer
alone. Such an approach is termed semi-automatic
assessment (Jackson, 2000). This research focuses
on semi-automatic assessment in order to give a
better quality of feedback whilst retaining much of
the efficiency increase associated with automated
approaches. The research initially deals with the
assessment of ‘if’ structures in order to prove the
theory behind the approach, because novice
programmers initially learn ‘if’ structures.

The structure of the paper is as follows: the next
section introduces related works in the field. Section
3 presents our approach, including potential
identifying, codifying, grouping and marking
processes. Section 4 includes a real-world case study
evaluation of the approach developed. Section 5
discusses the current issues and limitations posed by
the outlined approach, and the final section provides
conclusions and outlines the potential for future
work in this area.

2 RELATED WORK

In literature, there have been many approaches
proposed for the automatic assessment of
programming code. This paper will examine five
key existing approaches which have influenced our

own.
In the system developed by Wang et al. (2007),

semantic similarity is measured between students’
code and model answers to provide the grade. The
semantic similarity measurement includes program
size, structure and statement matching. In this
approach, the student’s program code structure is
standardised using specific rules to measure the
semantic similarity. Otherwise, the student program
and the model answers cannot be matched in terms
of the different ordering of statements or code
structure in the assessment process. Thus, some rules
are created in the system to standardise the students’
program code. The aim of the standardisation is to
eliminate unimportant syntactic variations from a
feedback perspective, and so reduce the number of
model answers, improving the program matching in
this system. For example, expressions, control
structures, and function invocation are standardized
by the system. Then, variables are renamed,
redundant statements are removed and statements
are reordered to improve automatic matching by the
system. Lastly, the semantic structures of student
program and model answers are matched, and then
the student gets the grade.

The aim of the system developed by Sharma et al.
(2014) is to teach students only using an ‘else-if’
structure, rather than a broader range of control
structures. Within the approach, a student’s ‘else-if’
structure, a block of programming that analyses
variables and chooses the direction in which to go
based on given parameters, is normalised in order to
compare it with a model answer. In order to
normalise the ‘else-if’ structure, each condition,
nested logic operator, arithmetic clause and
relational operator is automatically converted to a
clearer form using rules applied by the system. After
the normalisation of each statement in the ‘else-if’
structure, the system checks the ordering of the
conditions.

Scheme-Robo is a system developed by
Saikkonen et al. (2001). In this system, students can
resubmit their own assignments a certain number of
times. Students’ code structures are checked by the
system using an abstract tree for the code writing
exercises. This tree includes the general structure of
code or special sub-patterns. That is, the system
executes the tree to ascertain the correctness of the
students’ code structure. The system provides
feedback on failed parts of code as comments.

Jackson, (2000) indicated that human comment
is important to provide comprehensive feedback in
the semi-automatic assessment systems, and so he
developed a semi-automatic assessment. The system

CSEDU 2016 - 8th International Conference on Computer Supported Education

290

assesses the students’ program source code. In the
testing phase, the system gives the lecturer the
opportunity to view the students’ source code. The
system also asks the lecturer questions regarding
students’ program code as part of the assessment
process. The examiner gives an answer to questions
posed choosing one possible answer from the listed
answers such as awful, poor, fair, very good etc.,
and then the assessment process continues. It also
applies software metrics to students’ programs.
Lastly, students get feedback on his/her exercises.

In the system developed by Joy et al. (2005), the
correctness, style and authenticity of the student
program code is assessed. It is designed for
programming exercises. Students can submit their
programs using the BOSS system (a submission and
assessment system) (Joy et al., 2005). In the
feedback process, a lecturer tests and marks the
students’ submissions using BOSS. The system also
allows lecturers to get information on students’
results according to the automatic test applied and to
view original source code. Thus, the examiner can
then give further feedback in addition to the
system’s feedback. At the end of the assessment, the
student gets feedback including comments and a
score, rather than just a score.

2.1 Discussion of Related Work

In the related work section five studies were
introduced in terms of their strengths and
weaknesses. Although some of them may provide
sufficient feedback if correctly applied, they are not
designed to significantly alleviate the workload of
the examiner. That is, providing feedback may
impact negatively on the time taken by the examiner
to assess student work. The workload of the
examiner entirely depends on the approach of the
assessment systems. In addition to this, the workload
of the examiner also depends on the length of the
code script which could be short or long.

The systems of Wang et al. (2007) and Sharma et
al. (2014) and Saikkonen et al. (2001) focus on
student programming code structures, which can be
useful, but limiting in terms of feedback. While the
systems of Wang et al. (2007) and Saikkonen et al.
(2001) focus on the whole code structure in their
own systems, the system of Sharma et al. (2014)
covers only the ordering of conditions in the ‘else-if’
structure. The aim of the standardisation of the code
structure in the system of Wang et al. (2007) is to
reduce the number of model answers. Furthermore,
code structure is standardised to provide grade
students’ code rather than to provide comment

(feedback) on the code structure. On the other hand,
the system of Saikkonen et al. (2001) assesses the
return values instead of actual output strings because
of the differences in wording in students’ answers.
In other words, the system focuses on the execution
of abstract tree. In this case, the system of Saikkonen
et al. (2001) may not provide comprehensive
feedback for students. Also, Sharma et al. (2014)
system can be used only for ‘else-if’ structures,
which is effective for providing feedback to novice
programmers, but only on ‘else-if’. However, the
theory behind the system could allow it to handle
other control structures, loops and functions in the
future. Moreover, the quality of feedback could have
been enhanced by inclusion of a human in the
assessment process.

The system developed by Jackson (2000) and
Joy et al. (2005) highlights the importance of human
in the assessment process in providing
comprehensive feedback. In Jackson (2000) system
the examiner is part of the assessment process;
however, the examiner is used after the assessment
process in Joy et al. (2005) system. In these systems,
humans check each student’s code separately.
Therefore, the systems cannot reduce the workload
of examiners significantly, although they can
provide sufficient feedback using these approaches.
One significant drawback to Joy et al. (2005) system
is that while examiners can give additional
comments to students, the system could also
potentially provide inconsistent comments (as this is
not checked by the system). It is this automatic reuse
of feedback provided for given segments of code
that would have allowed greater consistency and
efficiency to be achieved. On the other hand, in
Jackson (2000) system, the examiner chooses one
comment from the suggested comments. However,
the system cannot provide comprehensive feedback
because the examiner cannot add comments to the
student’s code.

To conclude, the discussed assessment studies
intended to provide sufficient feedback and reduce
the workload of the examiner. However, they have
generally focused on whole code segments rather
than control structures, loop, functions etc. Thus,
they have generally provided superficial feedback
although some of them reduce the workload of the
examiner. Moreover, these discussed studies
generally based on the semantic similarity. The
proposed approach also related to semantic and
structure similarity. The main difference between
them is that the proposed approach does not need
model answer(s) although the discussed studies do.
Therefore, the proposed approach parses the whole

Semi-Automatic Assessment Approach to Programming Code for Novice Students

291

code script based on the repetitive parts of code
structures such as sequence part of code segments,
‘if’ control structures, loops and functions etc.
before the examiner providing feedback on them.
The following section discusses the approach of this
research.

3 APPROACH

This section describes the proposed approach, which
is based on analysing the source code of novice
programmers. It focuses on commenting the
repetitive elements of students’ program code. All
programming languages could potentially be
assessed using the proposed approach. That is, this
approach can be applied equally well independent of
programming language. Previous observations by
the paper authors of student code indicate that
students’ code structures generally contain similar
code segments. Table 1 shows examples of code
segments.

Table 1: A code example.

Name Program Code

A if (x==5){
 print ‘x equals to 5’}

B else{
 print ‘x is not equals to 5’}

In Table 1, code segments A and B together form
code referred to as ‘AB’. In this example, code
segment A refers to an ‘if’ structure, including the
condition and block parts. The condition part is
‘(x==5)’, while the block part is ‘print ‘x equals to
5’’. Table 2 gives example on same code segments
among students code.

Table 2: Programming codes.

Student 1 Student 2 Student 3 Student 4
A A A A
B B D B
C C C C

Each of the letters in Table 2 refers to a common
code segment. To simplify the explanation, the code
segments are illustrated as letters. This approach has
four key processes, which are identifying, codifying,
grouping and marking. Figure 1 shows the process
model of the proposed semi-automatic assessment
approach.

Figure 1: Processes model of the proposed Semi-
Automatic assessment approach.

The processes included in Figure 1 outlined
further in the bullet points below.

• Process 1: Students attempt to code an answer
to a question and then submit it.

• Process 2: Similar code segments are
identified by the system.

• Process 3: Similar code segments are
automatically codified by the system. For
example, in Table 2, four different similar code
segments are codified: the components A, B, C
and D. (After the codifying process, they are
called as components).

• Process 4: Components are automatically
grouped by the system in this process.

• Process 5: The examiner comments on each
different component once for each group.
Then, the examiner comments are utilised to
mark the rest of the component in the same
group by the system.

• Process 6: If any similar code segments cannot
be automatically codified by the system, they
can be marked and commented on manually by
the examiner.

• Process 7: Students’ results can be given as
feedback.

Using this assessment process, examiners’
workloads may be partially alleviated. On the other
hand, examiners have to ask very clear questions to
find similar code segments in different students’
code. Thus, the question type is very critical within
this approach. The following sections discuss the

CSEDU 2016 - 8th International Conference on Computer Supported Education

292

identifying, codifying, grouping and marking
processes in detail.

3.1 Identifying Process

Different students’ code can contain similar code
segments. Their similarities can be identified in this
process. This process refers to Process 2 in Figure 1.
Similar code segments can also include similar
control structures, conditions and block parts. The
following bullet points explain the details of similar
code segments.
• Similar Control Structure: If students’ code

segments include only the same control
structures, and disregard the condition and block
parts, they are considered similar control
structures.

• Similar Condition: If the numbers of arguments
in the condition parts of structures are the same,
regardless of the control structure name and
block parts, they are considered similar
conditions.

• Similar Block: If the block parts of control
structures include the same line, they are
considered similar block parts.
In this approach, if different students’ code

includes similar control structures, similar
conditions and similar block parts all together, they
are considered similar code segments (i.e.
similar(code segment)= similar(control structure) +
similar(condition) + similar(block)). In Table 3, two
similar code segments are illustrated.

Table 3: Examples of similar code segment.

Name Similar Code Segment

Similar
Code

Segment-1

if ((x = 0)and(t = 0)){
 y = x + 1
 z = t - 1
 print ‘y is positive’
 print ‘z is negative’}

Similar
Code

Segment-2

if ((t = 0)and(x = 0)){
 z = t - 1
 y = x + 1
 print ‘z is negative’
 print ‘y is positive’}

In Table 3, two code segments are considered
similar code segments because they have similar
code structures, similar conditions and similar block
parts. Both of them include only ‘if’ structures,
regardless of the condition and block parts of them,
and so they are considered similar code structure. In
the condition part of the two similar code segment
entities, it is obvious that the number of argument

remain unchanged. Therefore, those two condition
parts can be considered as similar conditions. Lastly,
the block parts include four lines, regardless of the
meaning, and so they are considered to be similar
blocks. To conclude, two different code segments, in
Table 3, can be considered similar code segments in
this paper. Similar code segments can be codified
after the identifying process.

3.2 Codifying Process

The aim of the codifying process is to increase the
number of standard forms among students’ solutions.
Students’ program codes are naturally different from
each other. The rest of this section discusses the
details of the codifying processes.

This process refers to Process 3 in Figure 1. In
this process, similar code segments can be codified
using rules. These rules can arrange the order of
arguments in the condition part and the order of
block lines of the similar code segments. For
example, in Table 3, the order of conditions of
similar code segments are different from each other.
After the codifying the condition parts of similar
code segments, the condition part of similar code
segment-2 can be identical with the condition part of
similar code segment-1. Additionally, the order of
block parts of similar code segments can be also
identical after the codifying process. Then, both
similar code segment-1 and similar code segment-2
from Table 3 can be called component A which is
illustrated in Table 4.

Table 4: Component A.

Component A
if ((x = 0)and(t = 0)){
 y = x + 1
 z = t - 1
 print ‘y is positive’
 print ‘z is negative’}

After the codifying process, there will be a
transformation from the two similar code segments
into the component A. The similar code segments
can be seen in the Table 3 while component A is
illustrated in the Table 4. Thus, the two similar code
segments from the Table 3 can be codified through
this process.

3.3 Grouping Process

String matching is the main part of the grouping
process. The result of the string match directly
affects the group numbers. After the codifying

Semi-Automatic Assessment Approach to Programming Code for Novice Students

293

process, the components can be grouped by the
system. This process refers to Process 4 in Figure 1.
In this process, each different component can be
grouped in terms of component structure in this
process. The component structure can be an ‘if’,
‘else-if’ or ‘else’ structure. For example, component
A refers to the ‘if’ structure in Table 4. Moreover, if
component A is used by 25 students, all of them can
be put into same group. That is, the created group
includes 25 components A according to this example.

In addition to this, a whole code script may
include not only ‘if’ structures but also sequence
part of code segments, loops, functions etc. That is, a
component could represent a sequence part of a code
segment, control structure, loop or function etc.
Each of them can be put into required groups
through the grouping process. In this case, more
complex assignments can also be assessed using the
approach taken by this research. However, the
grouping process should be applied systematically.
For instance, a group may include different
components which are not identical between each
other. Thus, the grouping process is very important
in this approach.

3.4 Marking Process

In this process, the examiner needs to comment and
mark only one component from each group, rather
than all of the components and the rest of the
components from each group can be automatically
marked by the system using the examiner comments.
This process refers to Process 5 in Figure 1. That is,
each component from same group can get same
comments through this process. Table 5 shows the
two programs’ code showing the same components
as letters.

Table 5: Two program code.

Code-1 Code-2
A
B
C

B
A
C

For example, in Table 5, after the examiner
comments component A from Code-1, another
component A can be automatically commented in
Code-2. In addition to this, we envisage that, in the
eventual tool each commented component could be
illustrated with different colours. For example, all
components A could be highlighted after the
examiner comments it (showing that those areas can
be ignored when reading other students code as they
have already been commented upon).

At the end of the marking process, the examiner
can also comment the non-codified similar code
segments. This process refers to Process 6 in Figure
1. Thus, each student’s code script can be marked
and commented by the examiner through the
proposed semi-automatic assessment approach.

4 FEASIBILITY OF THE
APPROACH

This section gives information on data collection, and
the analysis and discussion of parts of the case study.
The following sub-section explains the data collection.

4.1 Data Collection

Data was collected to ensure the feasibility of the
approach proposed in this research. A question on
‘else-if’ control structures was asked to students
taking semester one (2014) of the introduction to
programming module at Loughborough University.
The lab exam, which 53 students attempted, asked
about the usage of ‘else-if’ structures. 51 of the 53
students tried to use an ‘else-if’ structure; in other
words, 96% of students used ‘else-if’ structures in
their solutions. The students used the Python
programming language to complete the task, which
was as follows:

Write a program which asks the user to enter
integer values for the radius of the base and the
height of a cone. The program should then
calculate the surface area and the volume of the
cone, and the program should check for the
following conditions before calculating the area:
 If the radius or height is not a positive number
then the program should print the message:
 ERROR: Both the r and h values must be
positive numbers!
 If the radius or the height is more than 100
then the program should print the message:
 ERROR: Both the r and h values must be
less than or equal to 100 cm!
You MUST utilise the ‘if...elif…else’ statement
in your code.
According to the question, students must use the

‘else-if’ structure in his/her program code. Each
requirement needs to be highlighted in the questions
such as variable names, print messages, control
structures etc.

4.2 Analysis and Discussion

Students’ code segments were manually identified,

CSEDU 2016 - 8th International Conference on Computer Supported Education

294

codified, grouped and marked in this research. The
analysis section assumes that code segments written
by students are similar code segments. This process
refers to Process 2 in Figure 1. They have been
analysed in terms of ‘if’ control structures which are
‘if’, ‘else-if’ and ‘else’ structures. Table 6 shows the
three real source code which were written by the
students.

Table 6: Real similar code segments of students.
Name Students’ Similar Code Segments

X

if (h<=0 or r<=0):
 print "r and h must be
positive"
elif (h>100 or r>100):
 print "r and h less than 100"
else:
 s=3.14*r(r+(h*h+r*r)**0.5)
 v=(3.14*r*r*h)/3
 print s, "and", v

Y

if (h<=0 or r<=0):
 print "r and h must be
positive"

Z

if (h>100 or r>100):
print "r and h less than

100"
else:
 s=3.14*r(r+(h*h+r*r)**0.5)
 v=(3.14*r*r*h)/3
 print s, "and", v

The X refers to the ‘else-if’ structure; Y refers to
the ‘if’ structure, and lastly, Z refers to the ‘else’
structure in Table 6. Initially, each of them is
manually codified. This process refers to Process 3
in Figure 1. In this process, the orders of arguments
in condition parts of theirs and the orders of block
lines of theirs were fixed manually. Then, they were
considered component X, Y and Z after the
codifying process. Table 7 gives information on the
numbers of components which were obtained from
the codifying process.

Table 7: Number of components.

Component Name Number of Components

X (else-if structure) 43

Y (if structure) 1

Z (else structure) 1

According to Table 7, 43 students used
component X, and one student used both
components Y and Z (out of a total of 53 students).
That is, 44 students’ similar code segments were
codified using this approach. For the remaining nine
students’ similar code segments were not codified

because their segments did not resemble the code
structures X, Y and Z. Eight of these nine students
tried to use ‘else-if’ structures without else
statements. The remaining one of these nine students
used nested structures. Thus, these nine students’
code segments would have to be marked and
commented on by the examiner because they were
not codified, which is shown as Process 6 in Figure
1. Then, the component X, Y and Z were put into
groups. This process refers to Process 4 in Figure 1.
Table 8 shows the groups of components.

Table 8: Groups of components.

Group
Name Group1 Group2 Group3

Component
Name X Y Z

Group 1 includes component X, Group 2
includes component Y and Group 3 includes
component Z. After the grouping process, only one
components from the each group needs to be marked
and commented by the examiner. Then, the rest of
the non-commented components form each group
need to be assessed by the system. This process
refers to Process 5 in Figure 1. Table 9 shows the
components assessed by the examiner using the
proposed approach.

Table 9: Numbers of components marked by examiner and
proposed approach.

Component
 Name

Component
Number

Assessed
by the

Examiner

Assessed
by the

Proposed
Approach

X 43 1 42
Y 1 1 0
Z 1 1 0

In Table 9, three of 45 components need to be
marked by the examiner which refers to 7% of
components. The rest of the components, 42 of the
45 components which refer to 93% of components,
can be assessed by the proposed approach.

At the end of the assessment process, only the
three different components and the nine non-
codified similar code segments need to be marked
by the examiner. These highlighted numbers are
only related to the introduced example in this paper.
However, their numbers can change due to certain
issues. The next section will discuss issues identified
with the approach outlined.

Semi-Automatic Assessment Approach to Programming Code for Novice Students

295

5 ISSUES WITH THE PROPOSED
SEMI-AUTOMATIC
ASSESSMENT APPROACH

Although we successfully analysed the short
solutions of novice students, we did encounter some
problems. For example, different variable names,
print messages and order of components are a
problem for this approach. These problems are
discussed below.

5.1 Problem 1: Use of Different
Variable Names

Table 10 shows two different similar code segments.
‘a’ and ‘area’ are variable names in Table 10.

Table 10: Different similar code segments.

No Code
1 if(a < 0)

 print “should be positive”
2 if(area < 0)

 print “should be positive”

Although both statements are meant to make the
same comparison, two different components can be
created by the codifying process due to the use of
different syntax in variable names. That is, this issue
can cause the creation of extra, redundant
components.

5.2 Problem 2: Use of Different Print
Messages

Table 11 shows two different similar code segments.
‘Should be positive’ and ‘should not be negative’ are
the print message parts of the code.

Table 11: Different similar code segments.

No Code
1 if(a < 0)

 print “should be positive”
2 if(a < 0)

 print “Should not be negative”

Although both programs give the same message
in terms of meaning, their wording (i.e. strings) is
very different. Thus, in the codifying process, they
are codified differently; two different components
can be created due to the use of different syntax in
print messages.

Both problem 1 and problem 2 can cause the
creation of a new component in the assessment

process. If these issues are solved, component
numbers and also group numbers do not increase
redundantly. They can be solved through a user
interface. For example, it can be designed such as
the Scratch programming user interface (Resnick et
al., 2009). Students can drag and drop each part of
the code segment and so students will use same
variable names and print messages.

5.3 Problem 3: Order of Components

The differing order of components could be another
issue for this approach. Table 12 shows two different
programming codes showing components as a letter.

Table 12: Two different programming code.

Code-1 Code-2
A
B
C
E

B
A
C
D

In Table 12, two different program codes include
components which are A, B, C, D and E. The orders
of components in the students’ code are different
from each other. In this case, the automatically
commented components can be commented
incorrectly due to different orders of the components.
That is, students may get some incorrect feedback
because the incorrect order of the components can
cause logical errors. Thus, the different order of
components is a recognised issue for this approach
which needs to be addressed in the future.

6 CONCLUSIONS

This research paper has introduced a semi-automatic
assessment approach which helps examiners by
reducing the number of components to be marked. It
was applied manually and the initial results are very
encouraging. This approach has four important parts:
identifying, codifying, grouping and marking.
Codifying the similar code segments is also a
challenging part of it. The similarity measurement of
code segments is also discussed briefly, though
outlining this further will be the role of another
paper due to space constraints. Potential issues
relating to the application of this approach are also
discussed. To conclude, the proposed approach is
feasible according to the result of the case study
because the examiner only needed to assess three
components from 45 components. That is, 7% of
components were assessed by the examiner. Thus,

CSEDU 2016 - 8th International Conference on Computer Supported Education

296

examiner workloads can be partially reduced and
consistent feedback can be provided through the
proposed semi-automatic assessment approach.

6.1 Further Work

The approach outlined focuses primarily on ‘if’
structures. However, in order to provide a useful tool,
additional control structures will need to be
supported. The first step in this will be support for
‘for’ loops, as these are common across all high-
level programming languages. Similarity
measurement is also very important in order to
identify similar code segments in different students’
code. This particular area will be developed further
in the future. In terms of tool support to enable real
world testing of the approach a drag and drop user
interface is under development at the present time.

REFERENCES

Ala-Mutka, K.M. (2005). A survey of automated
assessment approaches for programming assignments.
Computer science education, 15(2), 83-102.

Cheang, B., Kurnia, A., Lim, A., & Oon, W. C. (2003). On
automated grading of programming assignments in an
academic institution. Computers & Education, 41(2),
121-131.

Clark, I. (2011). Formative Assessment: Policy,
Perspectives and Practice. Florida Journal of
Educational Administration & Policy, 4(2), 158–180.

Foxley, E., Higgins, C., Hegazy, T., Symeonidis, P. &
Tsintsifas, A. (2001). The CourseMaster CBA system:
Improvements over Ceilidh.

Jackson, D. (2000). A semi-automated approach to online
assessment. ACM SIGCSE Bulletin ACM, 164.

Joy, M., Griffiths, N. & Boyatt, R. (2005). The boss online
submission and assessment system. Journal on
Educational Resources in Computing (JERIC), 5(3), 2.

Kaczmarczyk, L.C., Petrick, E.R., East, J.P. & Herman,
G.L. (2010). "Identifying student misconceptions of
programming", Proceedings of the 41st ACM technical
symposium on Computer science educationACM, pp.
107.

Meerbaum-Salant, O., Armoni, M. & Ben-Ari, M. (2013).
Learning computer science concepts with scratch.
Computer Science Education, 23(3), 239-264.

Melmer, R., Burmaster, E., & James, T. K. (2008).
Attributes of effective formative assessment.
Washington, DC: Council of Chief State School
Officers. Retrieved October, 7, 2008.

Palmer, J., Williams, R., & Dreher, H. (2002). Automated
essay grading system applied to a first year university
subject – How can we do it better?. In Proceedings of
Informing Science 2002 Conference, Cork, Ireland,
June (pp. 19-21).

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K. & Kafai, Y. (2009).
Scratch: programming for all. Communications of the
ACM, 52(11), 60-67.

Rubio-Sánchez, M., Kinnunen, P., Pareja-Flores, C. &
Velázquez-Iturbide, Á. (2014). Student perception and
usage of an automated programming assessment tool.
Computers in Human Behavior, 31, 453-460.

Saikkonen, R., Malmi, L. & Korhonen, A. (2001). Fully
automatic assessment of programming exercises. ACM
Sigcse Bulletin ACM, pp. 133.

Schmidt, D.A. (2012). [Online] Programming Language
Semantics. Kansas State University. Available from:
http://people.cis.ksu.edu/~schmidt/705a/Lectures/chap
ter.pdf [Accessed 02 September 2015]

Scriven, M.S. (1967). The methodology of evaluation
(Perspectives of Curriculum Evaluation, and AERA
monograph Series on Curriculum Evaluation, No. 1.
Chicago: Rand NcNally.

Sharma, K., Banerjee, K., Vikas, I. & Mandal, C. (2014).
Automated checking of the violation of precedence of
conditions in else-if constructs in students' programs.
MOOC, Innovation and Technology in Education
(MITE), 2014 IEEE International Conference on
IEEE, 201.

Soloway, E. & Spohrer, J. C. (2013). Studying the novice
programmer. Psychology Press.

Wang, T., Su, X., Wang, Y. & Ma, P. (2007). Semantic
similarity-based grading of student programs.
Information and Software Technology, 49(2), 99-107.

Semi-Automatic Assessment Approach to Programming Code for Novice Students

297

