Cells Microenvironment Engineering - Multiphoton Absorption for Muscle Regeneration Optimization

V. Errico, R. Molinaro, C. Gargioli, F. Ferranti, M. Dinescu, S. Cannata, G. Saggio, S. Rufini, A. Desideri

2016

Abstract

The membrane-substrate interactions have a topological valence and represent a level of information exchange between the cell and the extra-cellular matrix and/or between cells. The interactions can vary with boundary conditions and can be altered by varying the chemical and/or physical properties of the substrate. The alteration can presumably result in differentiation or specialization of the cells, but this fundamental aspect must still be fully understood. In such a frame, we investigated the levels of transcriptional coactivators YAP/TAZ throughout C2C12 differentiation on standard two-dimensional substrates and on polyethylene glycol-fibrinogen three-dimensional microenvironment. In detail, we observed that the use of a three-dimensional matrix permits an earlier differentiation in muscular cells when compared to standard bidimensional substrates. On such a basis, we want to investigate the modulation of a more regular threedimensional pattern on cells proliferation response and we propose a matrix, generable with multiphoton absorption, with regular aligned channels in order to overcome the current limitation in muscle regeneration techniques, so a possible tool to improve the myofibers formation and alignment.

References

  1. Aragona, M. et al., 2013. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell, 154(5), pp.1047-1059. Available at: http://dx.doi.org/10.1016/ j.cell.2013.07.042.
  2. Belfield, K.D. et al., 2000. Near-IR two-photon photoinitiated polymerization using a fluorone/amine initiating system. Journal of the American Chemical Society, 122(6), pp.1217-1218.
  3. Bian, W. and Bursac, N., 2009. Engineered skeletal muscle tissue networks with controllable architecture. Biomaterials, 30(7), pp.1401-1412. Available at: http://dx.doi.org/10.1016/j.biomaterials.2008.11.015.
  4. Boldrin, L. et al., 2007. Satellite cells delivered by micropatterned scaffolds: a new strategy for cell transplantation in muscle diseases. Tissue engineering, 13(2), pp.253-262.
  5. Dhawan, V. et al., 2007. Neurotization improves contractile forces of tissue-engineered skeletal muscle. Tissue engineering, 13(11), pp.2813-2821.
  6. Fuoco, C. et al., 2015. In vivo generation of a mature and functional artificial skeletal muscle. EMBO Molecular Medicine, 7(4), pp.411-422.
  7. Fuoco, C. et al., 2012. Injectable polyethylene glycolfibrinogen hydrogel adjuvant improves survival and differentiation of transplanted mesoangioblasts in acute and chronic skeletal-muscle degeneration. Skeletal Muscle, 2(1), p.24. Available at: http://www.skeletalmusclejournal.com/content/2/1/24.
  8. Gilbert, P.M. et al., 2010. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science (New York, N.Y.), 329(5995), pp.1078-1081.
  9. Gittard, S.D. and Narayan, R.J., 2010. Laser direct writing of micro- and nano-scale medical devices. Expert review of medical devices, 7(3), pp.343-356. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC291 6174/.
  10. Hawke, T.J. and Garry, D.J., 2001. Myogenic satellite cells: physiology to molecular biology. Journal of Applied Physiology, 91, pp.534-551.
  11. Kamelger, F.S. et al., 2004. A comparative study of three different biomaterials in the engineering of skeletal muscle using a rat animal model. Biomaterials, 25(9), pp.1649-1655.
  12. Kroehne, V. et al., 2008. Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts. Journal of Cellular and Molecular Medicine, 12(5a), pp.1640-1648. Available at: http://doi.wiley.com/10.1111/j.1582-493 4.2008.00238.x.
  13. Low, B.C. et al., 2014. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Letters, 588(16), pp.2663-2670. Available at: http://linkinghub.elsevier.com/retrieve/ pii/S0014579314002981.
  14. Matei, A. et al., 2010. Two Photon Polymerization of Ormosils. AIP Conference Proceedings, 1278(1).
  15. Miranti, C.K. and Brugge, J.S., 2002. Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol, 4(4), pp.E83-E90. Available at: http://dx.doi.org/10.1038/ncb0402-e83.
  16. Novak, M.L., Weinheimer-Haus, E.M. and Koh, T.J., 2014. Macrophage activation and skeletal muscle healing following traumatic injury. The Journal of Pathology, 232(3), pp.344-355.
  17. Renault, V. et al., 2000. Skeletal muscle regeneration and the mitotic clock. Experimental Gerontology, 35(6-7), pp.711-719.
  18. Saxena, A.K. et al., 1999. Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue engineering, 5(6), pp.525-531.
  19. Sima, L.E. et al., 2013. Dermal cells distribution on laserstructured ormosils. Journal of Tissue Engineering and Regenerative Medicine, 7(2), pp.129-138. Available at: http://dx.doi.org/10.1002/term.507.
  20. Sun, H.-B. and Kawata, S., 2004. Two-Photon Photopolymerization and 3D Lithographic Microfabrication. In NMR • 3D Analysis • Photopolymerization. Apvances in Polymer Science. Springer Berlin Heidelberg, pp. 169-273. Available at: http://dx.doi.org/10.1007/b944 05.
  21. Tidball, J.G., 1995. Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc, 27(7), pp.1022- 1032. Available at: http://www.ncbi.nlm.nih.gov/pub med/7564969.
  22. Tidball, J.G. and Villalta, S.A., 2010. Regulatory interactions between muscle and the immune system during muscle regeneration. American journal of physiology. Regulatory, integrative and comparative physiology, 298(5), pp.R1173-R1187.
  23. Toumi, H. and Best, T.M., 2003. The inflammatory response: friend or enemy for muscle injury? British journal of sports medicine, 37(4), pp.284-286.
  24. Turner, N.J. and Badylak, S.F., 2012. Regeneration of skeletal muscle. Cell and Tissue Research, 347(3), pp.759-774.
  25. Urciuolo, A. et al., 2013. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nature Communications, 4(Article number: 1964), pp.1-25.
  26. Wang, L., Shansky, J. and Vandenburgh, H., 2013. Induced formation and maturation of acetylcholine receptor clusters in a defined 3D bio-artificial muscle. Molecular Neurobiology, 48(3), pp.397-403.
  27. Watt, K.I. et al., 2010. Yap is a novel regulator of C2C12 myogenesis. Biochemical and Biophysical Research Communications, 393(4), pp.619-624. Available at: http://dx.doi.org/10.1016/j.bbrc.2010.02.034.
  28. Weiß, T. et al., 2009. Two-Photon polymerization for microfabrication of three-dimensional scaffolds for tissue engineering application. Engineering in Life Sciences, 9(5), pp.384-390. Available at: http://dx.doi.org/10.1002/elsc.200900002.
  29. Zhao, Y. et al., 2009. Fabrication of skeletal muscle constructs by topographic activation of cell alignment. Biotechnology and Bioengineering, 102(2), pp.624-631.
Download


Paper Citation


in Harvard Style

Errico V., Molinaro R., Gargioli C., Ferranti F., Dinescu M., Cannata S., Saggio G., Rufini S. and Desideri A. (2016). Cells Microenvironment Engineering - Multiphoton Absorption for Muscle Regeneration Optimization . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 241-246. DOI: 10.5220/0005790402410246


in Bibtex Style

@conference{biodevices16,
author={V. Errico and R. Molinaro and C. Gargioli and F. Ferranti and M. Dinescu and S. Cannata and G. Saggio and S. Rufini and A. Desideri},
title={Cells Microenvironment Engineering - Multiphoton Absorption for Muscle Regeneration Optimization},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2016)},
year={2016},
pages={241-246},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005790402410246},
isbn={978-989-758-170-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, (BIOSTEC 2016)
TI - Cells Microenvironment Engineering - Multiphoton Absorption for Muscle Regeneration Optimization
SN - 978-989-758-170-0
AU - Errico V.
AU - Molinaro R.
AU - Gargioli C.
AU - Ferranti F.
AU - Dinescu M.
AU - Cannata S.
AU - Saggio G.
AU - Rufini S.
AU - Desideri A.
PY - 2016
SP - 241
EP - 246
DO - 10.5220/0005790402410246