Finally, the experimental results obtained
indicate that the MobiAct can be considered as a
benchmark dataset since it includes a relatively large
number of records and a wide range of activities in
an easy to manage data format. Furthermore, since
the placement of the smartphone is freely chosen by
the subject in any random orientation we believe that
it represents real life conditions as close as possible.
The next step towards developing a real-life
application requires that a) orientation data is used in
a more efficient manner and b) assessment and
optimization of power consumption (battery usage)
requirements for the feature extraction and
classification algorithms, is thoroughly studied.
ACKNOWLEDGEMENTS
This work is partly funded by the WeMP – Wellness
Management Platform funded by FORTHnet S.A.
The authors gratefully thank all volunteers for
their contribution in the generation of the MobiAct
dataset.
REFERENCES
Anguita, D., Ghio, A., Oneto, L., Parra, X. and Reyes-
Ortiz, J. L., 2012, 'Human Activity Recognition on
Smartphones Using a Multiclass Hardware-Friendly
Support Vector Machine', in Ambient Assisted Living
and Home Care, Springer Berlin Heidelberg, Vitoria-
Gasteiz.
Anjum, A. and Ilyas, M. U., 2013, 'Activity recognition
using smartphone sensors', Consumer
Communications and Networking Conference
(CCNC), 11-14 January 2013, pp. 914-919, DOI:
10.1109/CCNC.2013.6488584.
Bayat, A., Pomplun, M. and Tran, D. A., 2014, 'A Study
on Human Activity Recognition Using Accelerometer
Data from Smartphones', 11th International
Conference on Mobile Systems and Pervasive
Computing (MobiSPC'14), 2014, pp. 450-457,
DOI:10.1016/j.procs.2014.07.009.
Buber, E. and Guvensan, A. M., 2014, 'Discriminative
time-domain features for activity recognition on a
mobile phone', IEEE 9th International Conference on
Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), 21-24 April 2014, pp. 1-6,
DOI:10.1109/ISSNIP.2014.6827651.
Dernbach, S., Das, B., Krishnan, N. C., Thomas, B. L. and
Cook, D. J., 2012, 'Simple and Complex Activity
Recognition through Smart Phones', 8th International
Conference on Intelligent Environments (IE), 26-29
June 2012, pp. 214-221.
Fan, L., Wang, Z. and Wang, H., 2013, 'Human Activity
Recognition Model Based on Decision Tree',
Proceedings of the 2013 International Conference on
Advanced Cloud and Big Data (CBD '13), 2013, pp.
64-68, DOI: 10.1109/CBD.2013.19.
Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P. and Witten, I. H., 2009, 'The WEKA
data mining software: an update', ACM SIGKDD
Explorations Newsletter, vol 11, no. 1, pp. 10-18.
Khan, A. M., Lee, Y. K., Lee, S. Y. and Kim, T. S., 2010,
'Human Activity Recognition via an Accelerometer-
Enabled-Smartphone Using Kernel Discriminant
Analysis', 5th International Conference in Future
Information Technology (FutureTech), 2010, DOI:
10.1109/FUTURETECH.2010.5482729.
Kwapisz, J. R., Weiss, G. M. and Moore, S. A., 2011,
'Activity recognition using cell phone accelerometers',
ACM SIGKDD Explorations Newsletter, 31 March
2011, pp. 74-82, DOI: 10.1145/1964897.1964918.
Lee, Y. S. and Cho, S. B., 2011, 'Activity Recognition
Using Hierarchical Hidden Markov Models on a
Smartphone with 3D Accelerometer', Hybrid Artificial
Intelligent Systems, 2011, pp. 460-467, DOI:
10.1007/978-3-642-21219-2_58.
Leutheuser, H., Schuldhaus, D. and Eskofier, B. M., 2013,
'Hierarchical, Multi-Sensor Based Classification of
Daily Life Activities: Comparison with State-of-the-
Art Algorithms Using a Benchmark Dataset', PLoS
ONE, vol 8, no. 10, DOI:
10.1371/journal.pone.0075196.
Saputri, T. R. D., Khan, A. M. and Lee, S. W., 2014,
'User-Independent Activity Recognition via Three-
Stage GA-Based Feature Selection', International
Journal of Distributed Sensor Networks, 2014, p. 15,
DOI: 10.1155/2014/706287.
Shoaib, M., Bosch, S., Incel, O. D. and Scholten, H., 2015,
'A Survey of Online Activity Recognition Using
Mobile Phones', Sensors, vol 15, pp. 2059-2085.
Siirtola, P. and Röning, J., 2012, 'Recognizing Human
Activities User-independently on Smartphones Based
on Accelerometer Data', International Journal of
Interactive Multimedia and Artificial Intelligence,
2012, pp. 38-45, DOI: 10.1155/2014/706287.
Siirtola, P. and Roning, J., 2013, 'Ready-to-use activity
recognition for smartphones', IEEE Symposium on
Computational Intelligence and Data Mining (CIDM),
16-19 April 2013, pp. 59-64, DOI:
10.1109/CIDM.2013.6597218.
Vavoulas, G., Pediaditis, M., Chatzaki, C., Spanakis, E. G.
and Tsiknakis, M., 2014, 'The MobiFall Dataset: Fall
Detection and Classification with a Smartphone',
International Journal of Monitoring and Surveillance
Technologies Research (IJMSTR), 2014, p. 13, DOI:
10.4018/ijmstr.2014010103.
Vavoulas, G., Pediaditis, M., Spanakis, E. and Tsiknakis,
M., 2013, 'The MobiFall Dataset: An Initial
Evaluation of Fall Detection Algorithms Using
Smartphones', IEEE 13th International Conference on
Bioinformatics and Bioengineering (BIBE).