Compressed Sensing and Classification of Cardiac Beats using Patient Specific Dictionaries

Monica Fira, Liviu Goras, Victor-Andrei Maiorescu, Mihaela Catalina Luca

2016

Abstract

In this paper, we investigated the benefits of compressed acquisition for monitoring applications of patients with various heart diseases. The possibility of heartbeat acquisition followed by classification into one of two classes, namely, normal beats or pathological has been approached using patient-specific dictionaries. Moreover, several types of projection matrices (matrices with random i.i.d. elements sampled from the Gaussian or Bernoulli distributions, and matrices optimized for the particular dictionary used in reconstruction by means of appropriate algorithms) have been compared. The dictionaries used in the reconstruction phase were built with and without centred R waves.

References

  1. D. Compressed sensing, IEEE Information Theory, 52(4) (2006) 1289 - 1306.
  2. Donoho D. Compressed sensing, Technical Report, Stanford Univ., 2004.
  3. Candès E. and Wakin M., An introduction to compressive sampling. (IEEE Signal Processing Magazine 25(2) (2008) 21-30.
  4. Elad M. “Optimized Projections for Compressed Sensing”, IEEE Transactions on Signal Processing, Vol. 52, 2007.
  5. Shaobing Chen S., Donoho D., Saunders M. A., Atomic Decomposition by Basis Pursuit, Journal on Scientific Computing, Vol. 20 Issue 1 (1998).
  6. Polania, L.F, Carrillo, R.E., Blanco-Velasco M. ,Barner K.E., Compressed sensing based method for ECG compression, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011.
  7. Zhang Z., Tzyy-Ping Jung, Scott Makeig, Bhaskar D. Rao, Compressed Sensing for Energy-Efficient Wireless Telemonitoring of Non-Invasive Fetal ECG via Block Sparse Bayesian Learning, IEEE Transactions on Biomedical Engineering, 2013.
  8. Fira M., Goras L., Barabasa C., Cleju N., “On ECG Compressed Sensing using Specific Overcomplete Dictionaries”, Advances in Electrical and Computer Engineering, Vol. 10, Nr. 4, 2010.
  9. Fira M., Goras L., Barabasa C., Reconstruction of Compressed Sensed ECG Signals Using Patient Specific Dictionaries, International Symposium on Signals, Circuits and Systems (ISSCS 2013), Iasi, Romania, 2013.
  10. Fira M., Goras L., Barabasa C., Cleju N., ECG compressed sensing based on classification in compressed space and specified dictionaries, the 2011 European Signal Processing Conference (EUSIPCO 2011), 29 August - 2 September 2011, Barcelona, Spain, pp. 1573 - 1577, 2011.
  11. Fira M., Goras L., Cleju N., Barabasa C., Results on ECG Compressed Sensing using Specific Dictionaries and its Validation, International Conference on Information Technology Interfaces - ITI 2012, 25 - 28 June 2012, Dubrovnik, Croatia, pp. 423-428, 2012.
  12. Cleju N., Fira M., Barabasa C., Goras L., Robust reconstruction of compressively sensed ECG patterns, ISSCS 2011 (The 10-th International Symposium on Signals, Circuits and Systems), 30 June - 1 July 2011, Iasi, pp. 507-510, 2011.
  13. http://www.physionet.org/physiobank/database/mitdb/ Polania L. F., Carrillo R. E., Blanco-Velasco M., E. Barner K., “ECG compression via matrix completion”, EUSIPCO 2011.
  14. Polania L. F., Carrillo R. E., Blanco-Velasco M., E. Barner K., “Compressed sensing based method for ECG compression”, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011.
  15. Mamaghanian H., Khaled N., Atienza D., Vandergheynst P., ”Compressed Sensing for Real-Time EnergyEfficient ECG Compression on Wireless Body Sensor Nodes”, IEEE Trans Biomed Eng. 2011 Sep;58(9):2456-66.
Download


Paper Citation


in Harvard Style

Fira M., Goras L., Maiorescu V. and Luca M. (2016). Compressed Sensing and Classification of Cardiac Beats using Patient Specific Dictionaries . In Proceedings of the International Conference on Information and Communication Technologies for Ageing Well and e-Health - Volume 1: ICT4AWE, (ICT4AGEINGWELL 2016) ISBN 978-989-758-180-9, pages 173-179. DOI: 10.5220/0005793401730179


in Bibtex Style

@conference{ict4awe16,
author={Monica Fira and Liviu Goras and Victor-Andrei Maiorescu and Mihaela Catalina Luca},
title={Compressed Sensing and Classification of Cardiac Beats using Patient Specific Dictionaries},
booktitle={Proceedings of the International Conference on Information and Communication Technologies for Ageing Well and e-Health - Volume 1: ICT4AWE, (ICT4AGEINGWELL 2016)},
year={2016},
pages={173-179},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005793401730179},
isbn={978-989-758-180-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Information and Communication Technologies for Ageing Well and e-Health - Volume 1: ICT4AWE, (ICT4AGEINGWELL 2016)
TI - Compressed Sensing and Classification of Cardiac Beats using Patient Specific Dictionaries
SN - 978-989-758-180-9
AU - Fira M.
AU - Goras L.
AU - Maiorescu V.
AU - Luca M.
PY - 2016
SP - 173
EP - 179
DO - 10.5220/0005793401730179