new graph similarity measure or new dynamics to im-
prove the results or to adapt it to different contexts.
REFERENCES
Ardanuy, M. C. and Sporleder, C. (2014). Structure-based
clustering of novels. EACL 2014, pages 31–39.
Bharat, K., Curtiss, M., and Schmitt, M. (2009). Methods
and apparatus for clustering news content. US Patent
7,568,148.
Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). La-
tent dirichlet allocation. J. Mach. Learn. Res., 3:993–
1022.
Dhillon, I. S. (2001). Co-clustering documents and words
using bipartite spectral graph partitioning. In Pro-
ceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 269–274. ACM.
Ding, C., Li, T., and Peng, W. (2006). Nonnegative ma-
trix factorization and probabilistic latent semantic in-
dexing: Equivalence chi-square statistic, and a hybrid
method. In Proceedings of the national conference
on artificial intelligence, volume 21, page 342. Menlo
Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999.
Erdem, A. and Pelillo, M. (2012). Graph transduction
as a noncooperative game. Neural Computation,
24(3):700-723.
Haykin, S. and Network, N. (2004). A comprehensive foun-
dation. Neural Networks, 2(2004).
Hofbauer, J. and Sigmund, K. (2003). Evolutionary game
dynamics. Bulletin of the American Mathematical So-
ciety, 40(4):479–519.
Jain, A. K. and Dubes, R. C. (1988). Algorithms for clus-
tering data. Prentice-Hall, Inc.
Landauer, T. K., Foltz, P. W., and Laham, D. (1998). An in-
troduction to latent semantic analysis. Discourse pro-
cesses, 25(2-3):259–284.
Lee, D. D. and Seung, H. S. (1999). Learning the parts of
objects by non-negative matrix factorization. Nature,
401(6755):788–791.
Lovasz, L. (1986). Matching theory (north-holland mathe-
matics studies).
Manning, C. D., Raghavan, P., Sch
¨
utze, H., et al. (2008).
Introduction to information retrieval, volume 1. Cam-
bridge university press Cambridge.
Nash, J. (1951). Non-cooperative games. Annals of mathe-
matics, pages 286-295.
Nowak, M. A. and Sigmund, K. (2004). Evolutionary dy-
namics of biological games. science, 303(5659):793–
799.
Okasha, S. and Binmore, K. (2012). Evolution and rational-
ity: decisions, co-operation and strategic behaviour.
Cambridge University Press.
Pavan, M. and Pelillo, M. (2007). Dominant sets and pair-
wise clustering. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, 29(1):167–172.
Peterson, A. D. (2011). A separability index for clustering
and classification problems with applications to clus-
ter merging and systematic evaluation of clustering al-
gorithms.
Pompili, F., Gillis, N., Absil, P.-A., and Glineur, F. (2014).
Two algorithms for orthogonal nonnegative matrix
factorization with application to clustering. Neuro-
computing, 141:15–25.
Rota Bul
`
o, S. and Pelillo, M. (2013). A game-theoretic
approach to hypergraph clustering. IEEE transac-
tions on pattern analysis and machine intelligence,
35(6):1312–1327.
Sandholm, W. H. (2010). Population games and evolution-
ary dynamics. MIT press.
Sankaranarayanan, J., Samet, H., Teitler, B. E., Lieberman,
M. D., and Sperling, J. (2009). Twitterstand: news
in tweets. In Proceedings of the 17th acm sigspatial
international conference on advances in geographic
information systems, pages 42–51. ACM.
Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods
for pattern analysis. Cambridge university press.
Smith, J. M. and Price, G. (1973). The logic of animal con-
flict. Nature, 246:15.
Strehl, A. and Ghosh, J. (2003). Cluster ensembles—
a knowledge reuse framework for combining multi-
ple partitions. The Journal of Machine Learning Re-
search, 3:583–617.
Szab
´
o, G. and Fath, G. (2007). Evolutionary games on
graphs. Physics Reports, 446(4):97-216.
Tagarelli, A. and Karypis, G. (2013). Document clustering:
The next frontier. Data Clustering: Algorithms and
Applications, page 305.
Taylor, P. D. and Jonker, L. B. (1978). Evolutionary sta-
ble strategies and game dynamics. Mathematical bio-
sciences, 40(1):145–156.
Von Neumann, J. and Morgenstern, O. (1944). Theory
of Games and Economic Behavior (60th Anniversary
Commemorative Edition). Princeton University Press.
Weibull, J. W. (1997). Evolutionary game theory. MIT
press.
Xu, W., Liu, X., and Gong, Y. (2003). Document clustering
based on non-negative matrix factorization. In Pro-
ceedings of the 26th annual international ACM SI-
GIR conference on Research and development in in-
formaion retrieval, pages 267–273. ACM.
Zhao, Y. and Karypis, G. (2004). Empirical and theoretical
comparisons of selected criterion functions for docu-
ment clustering. Machine Learning, 55(3):311–331.
Zhao, Y., Karypis, G., and Fayyad, U. (2005). Hierarchi-
cal clustering algorithms for document datasets. Data
mining and knowledge discovery, 10(2):141–168.
Zhong, S. and Ghosh, J. (2005). Generative model-based
document clustering: a comparative study. Knowledge
and Information Systems, 8(3):374–384.
ICPRAM 2016 - International Conference on Pattern Recognition Applications and Methods
118