
Towards Executable UML Interactions based on fUML

Marc-Florian Wendland
Fraunhofer Institut FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

Keywords: UML Interactions, fUML, UML Activities, Executable UML, Executable Interactions, PSCS.

Abstract: Executable specifications for UML currently comprise fUML, precise semantics of composite structures and
in future precise semantics for state machines. An executable semantics for UML Interactions is on the
roadmap, but has not been addressed by the OMG Executable UML working group so far. Interactions are
said to be the second most used diagrams after class diagram of UML, thanks to their comprehensibility and
illustrative visualization. Unfortunately, they suffer from fuzzy semantics and technical issues that wastes the
potential Interactions could have for engineering activities apart from high-level specifications. In this
position paper we present first results from experiments and attempts to map UML Interactions to fUML
Activities in order to eventually execute them.

1 INTRODUCTION

UML Interactions, better known as sequence
diagrams, are a one of the standardized UML (UML,
2015) behavior kinds that describe the exchange of
messages among parts of a system or sub-system,
represented by Lifelines. Interactions are familiar to
many stakeholders because of their illustrative
graphical notation that is easy to comprehend.
However, the UML Interactions metamodel is not as
precise as desired, in particular with respect to data
(Wendland et al., 2013). As a result, they are mostly
used for sketching high-level specifications of use
cases or early protocol specification. UML
Interactions reveal global viewpoint on the interplay
of participating instances. This is different to UML
State Machines or UML Activities that usually
describe the behavior of dedicated participants from
an internal (or local) point of view. In fact, UML
Interactions are the only standardized UML behavior
that describe the exchange of Messages from a global
point of view. This give rise to the fact that
Interactions usually do not have no direct counterpart
in an implementation. They rather resembles a virtual
window that allows insights into the execution of
system at a certain point of time.

UML Interactions are said to be the UML’s
second most used diagrams (after class diagrams) due
to their easily comprehensible notation that foster
communication among stakeholder. For a more
precise system specification, however, the

aforementioned fuzzy semantics of UML Interactions
(including but not limited to the lack of data flow
concepts) makes it complicated to exploit their whole
potential. Executable Interactions help to overcome
the semantical shortcomings by explicitly stating
which features of UML Interactions can be used for
precise (yet executable) specifications and how these
features are modelled best with the UML Interactions
metamodel.

A working group at OMG has started giving
subsets of the UML behaviors a precise yet
executable semantics. The first standard of executable
UML was released in 2011 based on UML Activities.
It is called Foundational Subset for Executable UML
Models (fUML, 2012), in short fUML. Meanwhile, a
precise specification of the semantics of composite
structures (PSCS, 2015) is on the verge of being
standardized and above all the executable UML
working group is currently heading towards precise
semantics for executable state machines (PSSM).
UML Interactions are already on the roadmap of the
Executable UML working group but not in focus yet.

In this position paper, we report first results of a
mapping from UML Interactions to fUML in order to
assign the UML Interaction building blocks an
operational semantics. This enables the use of
Interactions for building executable specification,
which has, as we are certain, an enormous potential
to improve the entire development chain, spanning
from requirements engineering, rapid prototyping to
testing of executable specifications.

We focus in this position paper on UML

Wendland, M-F.
Towards Executable UML Interactions based on fUML.
DOI: 10.5220/0005809804050411
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 405-411
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

405

Interactions in an isolated way. UML behaviors are,
at least technically and theoretically, integrated with
each other. This enables engineers to select the
behavioral kind that is most appropriate for him or
her. The main objective of our work is to provide an
operational semantics for the constituents of an
Interaction (e.g. Messages, CombinedFragments etc.)
and the flow of execution within Interactions. As
such, the discussion about how Interactions integrate
with other UML behaviors (first and foremost fUML
Activities) is not part of this paper, but is rather a
research paper on its own.

This position paper implies familiarity with the
UML metamodel, in particular with Interactions and
Activities. Therefore, we spare an introduction into
the semantics and the metamodel of UML
Interactions, UML Activities and fUML.

The remainder of this paper is structured as
follows: In Section 2 the work related to our work will
be summarized. Section 3 summarizes the base
semantics and preliminary mapping rules of our
approach. Section 4 evaluates a proof-of-concept that
demonstrates the feasibility of our work. It
summarizes a issues we faced when working on the
mapping. Section 6 eventually concludes this paper
and sketches future work in the area of executable
UML Interactions.

2 RELATED WORK

A lot of work has been done in the first few years of
UML 2 in the realm of formal semantics of UML
Interaction traces. Haugen compares UML
Interactions and Message Sequence Charts (Haugen,
2004) showing that Interactions and MSCs are similar
down to small details.

Haugen, Stolen, Husa, and Runde have written a
series of paper on the compositional development of
UML Interactions supporting the specification of
mandatory and potential behavior, called STAIRS
approach (Haugen and Stølen, 2003; Haugen, Husa,
Runde and Stølen, 2005; Haugen, Husa, Runde and
Stølen, 2005; Runde, Husa, Haugen and Stølen,
2005). A depper analysis is dedicated to a fine-
grained differentiation of event reception,
consumption and timing (Haugen, Husa, Runde and
Stølen, 2005) and the refinement of Interactions with
regard to underspecification and nondeterminism
(Runde, Husa, Haugen and Stølen, 2005). Lund and
Stolen have presented an operational semantics for
UML sequence diagrams (Lund and Stølen, 2003).

Formal semantics of UML Interactions and
sequence diagrams were several times discussed.

Störrle presented a formal specification of UML
Interactions and a comparison of UML 2.0 and UML
1.4 Interactions (Störrle, 2003; Störrle, 2004). A
similar work was done by Knapp and Cengarle
(Knapp, 1999; Cengarle and Knapp, 2004), Li and
Ruan (Li and Ruan, 2011) and Shen et al., (2008).
Special attention was set to the semantics of assert
and negative CombinedFragments (Störrle, 2003;
Harel and Maoz, 2006), though. Prior to UML
sequence diagrams Damm and Harel (Damm and
Harel, 1999) worked on a notation called Life
Sequence Charts.

The work done by Wendland et al., (2013)
focuses a different aspect of UML Interactions,
namely the precise definition of Message arguments.
In that case, their work is different to the previously
mentioned papers that mostly dedicated to the trace
semantics of Message reception and consumption
within UML Interactions, but they did not focus on
precisely specifying data transmitted by Messages.

The work described in this paper is different to all
the previously mentioned work for it uses fUML to
state the semantics of UML Interactions. fUML’s
formal semantics was defined using the ISO standard
Process Specification Language (PSL, 2004) and
Common Logic (CL, 2007). The decision to map
UML Interactions to fUML was made to provide
engineers with an easy to understand and familiar
notation (UML Activities) for executable
Interactions. We think this increase both the
comprehensibility and applicability of executable
Interactions. In fact, an engineer who knows UML
Activities and its action semantics is capable of
reading and writing UML Interactions in a precise yet
executable manner.

3 TOWARDS EXECUTABLE
INTERACTIONS

The following section discusses some of the
fundamental concepts for executable Interactions.
Therefore, we related the semantics of UML
Interactions and some of its building blocks to fUML
concepts. Besides technical discussions we also
highlight restrictions to some meta-concepts of such
as the binding character or general trace semantics of
UML Interactions.

3.1 Descriptive Vs Prescriptive
Behaviors

UML introduces the notion of descriptive versus

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

406

prescriptive behaviors. UML State Machines and
Activities are prescriptive, whereas Interactions are
by definition descriptive. As such, Interactions tell
only parts of the story that is actually going on at
runtime. They do not claim to be complete, although
it not prohibited interpreting Interactions in such a
way. Descriptive (or partial) behavior is in particular
appropriate on a higher specification level, but for
model execution, prescriptive behavior is required.
Hence, the fundamental difference between
executable and non-executable Interactions is that the
first one prescribes explicitly what will happen and
does not describe what may happen at runtime.

3.2 Invalid Vs Valid Traces

UML Interactions are the only behavior that
differentiates between invalid and valid occurrence
traces, though. It enables engineers to model
scenarios that represent invalid system behavior, or
unwanted scenarios. Invalid traces are predestined
means to specify unwanted or undesired scenarios,
however, there is no understanding of the
consequences an invalid behavior entails once
occurred. This underpins the higher-level
specification character of Interactions, though.
Invalid traces are usually resolved into concrete
measures of an implementation or simulation like
e.g., throwing an exception or any other adequate
measure to handle and mitigate invalid system or
environment behavior (e.g., a user or an interacting
system behaves incorrectly). In fact, resolved invalid
traces constitute valid traces that specify what shall
happen in erroneous situations. Therefore, the notion
of invalid traces is excluded for executable
Interactions.

3.3 Ordering of Execution Traces

The main building blocks an Interactions consists of
are occurrences. An occurrence in the realm of
Interactions is the smallest piece of executable
behavior (e.g. a statement) and manifests as instance
of the metaclass OccurrenceSpecification in the
metamodel. (Actually, the real building blocks are
InteractionFragments, but only
OccurrenceSpecification represent execution of
event.) An OccurrenceSpecification is, thus,
semantically close to the metaclass Action that
represents the fundamental building blocks of
Activities.

fUML specifies the execution of a behavior as a
set of event occurrences called execution trace that
span from the invocation of the behavior over

behavior-local event occurrences to its termination.
This matches very well with the trace semantics of
Interactions that orders the InteractionFragments it
contains both globally and locally. The local
InteractionFragments (i.e., those covering the very
same Lifeline) result in corresponding Actions as
owned behavior of the Class that is represented by the
Lifeline. The corresponding Actions are connected by
ControlFlow edges (remember, no data manipulation
concepts). Global ordering of InteractionFragments is
for the construction of an Activity from a Lifeline less
important. If all the Lifelines are properly mapped to
Activities, abidance of global event occurrence
ordering is a result of abidance of local even
occurrence ordering.

The concrete Actions that constitute the resulting
executable fUML behavior of an Interaction
according to the covering InteractionFragments
depends eventually on the mapping rules for those
InteractionFragments.

3.4 Interaction and Lifelines

UML Interactions represent a global view on the
interplay of system parts. Even though we said earlier
that executable Interactions have to be prescriptive,
the global viewpoint of Interactions holds still true.
Nonetheless, the handling of a Lifeline’s lifecycle
needs to be co-ordinated. Therefore, an Interaction
(Interaction is also the name of the metaclass that
contains all building block, thus, it builds the
outermost boundary of the behavioral description) is
mapped to an Activity. This Activity is then
responsible for co-ordination. The co-ordinating
(henceforth called main) Activity is responsible to
initially create, accept (in case of an invocation of an
Interaction) and finally destroy Lifelines. The
semantics of Lifeline handling shall be aligned with
the PSCS semantics (PSCS, 2015), in particular with
its instantiation patterns.

A Lifeline indirectly represents (by representing a
part in a composite structure) a set of instances of a
Classifier. This Classifier shall only be of type Class
(there are further concrete subclasses of Classifier
such as DataType or Collaboration, though). The
reason is that only instances of the UML metaclass
BehavioralClassifiers are allowed owning behaviors
and as such offering methods to its environment.

Even though possible, executable Interactions
restrict the number of Lifelines that represent the
same part (role of a Class in the underlying composite
structure) to exactly one. This is mainly because the
selection mechanism of Lifelines, that distinguishes
sets of instances of the same role, is not precisely

Towards Executable UML Interactions based on fUML

407

specified in UML and requires clarification first.
UML states that the ValueSpecification that
constitute the selection mechanism shall evaluate to a
positive (range of) Integer, identifying the respective
instances in the set of all instances of the role. Since
roles may represent unordered collections, selection
by index cannot be applied.

Due to the global viewpoint of UML Interactions,
the use of parameters and global attributes needs
careful treatment. Such global ConnectableElements
(ConnectableElement is the common superclass of
Parameter and Property in UML), are in fact shared
among all Lifelines that take part in an Interaction
and, thus, need to be accessible by all Lifelines. This
means that there must be coordinating instance that
holds the ConnectableElements and grants access to
them. Since Interactions provide no concepts for data
flows or modifications as described in clause 17.1.1
in UML 2.5 (“…but the Interactions do not focus on
the manipulation of data even though data can be
used to decorate the diagrams.”), the use of global
ConnectableElements is discouraged for the time
being. Wendland, Schneider and Haugen have
recognized the lack of concepts to describe data flows
in Interactions and have provided a minimal
extension to the UML metamodel to mitigate these
shortcomings. This means that at some point in
future, when data flows are supported by Interactions,
the use of global ConnectableElements will be, for
sure, reconsidered by our work.

3.5 Mapping Rules Overview

Based on first investigations and experiments with
executable (i.e., fUML compliant) Interactions, we
identified a set of mapping rules between Interactions
and fUML metamodel. We spared all UML
Interaction concepts we have not yet fully
investigated. This means, every metaclass that is not
mentioned in Table 1 is left open for future work.

4 PROOF-OF-CONCEPT

Several prototypic (manual) compilations from UML
Interactions to fUML-based executable Interactions
have been performed prior to this work. A simple
abstract example that illustrates the feasibility of our
idea is depicted in Figure 1.

Table 1: Preliminary mapping rules for UML Interactions.

UML Interaction concept fUML Activity concept
Interaction (main) Activity
Lifeline Class with

classifierBehavior set to the
mapped Activity

Sending
MessageOccurrence
Specification (MOS)

SendSignalAction (later
also CallOperationAction,
Create/DestroyObjectActio
n)

Receiving MOS AcceptEventAction (or
request to create/destroy
instances)

Message Arguments and signature
used to complete
InvocationAction; mapped
solely to Signal sending and
reception.

CombinedFragment
(only par, loop, alt, seq,
strict)

LoopNode, DecisionNode,
ForkNode,
ConditionalNode

GeneralOrdering Indirectly mapped to co-
ordinating Signals

InteractionOperand Sequence of Actions
connected by ControlFlow

4.1 Descriptions of the Example

The Collaboration ServiceChoreography consists of
two parts that are connected via a Connector that ends
in compatible Ports. The Interaction SD1 (potentially
in addition to further Interactions of the
Collaboration) is visualized as sequence diagram in
the lower compartment of the Collaboration (which
serves mere illustration purposes, but is not standard
UML). The Collaboration, its composite structure and
its owned behavior SD1 are compiled into a
corresponding fUML- and PSCS-compliant model
afterwerds.

Figure 1: Early proof-of-concepts for executable
Interactions.

In this example, however, we will solely focus on
the mapping of behavioral aspects. A precise
integration with PSCS, especially the create of new

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

408

instances (respectively Lifelines) is not covered in
this position paper.

The main Activity ServiceChoreography_SD1
is responsible to instantiate and connect the instances
according to the PSCS rules. Afterwards, the
Operations that represent the respective Lifeline
behavior is started in parallel. Due to the already
instantiated and working instances, events can be put
into the respective event pools, thus, events will not
get lost, even if Service1_SD1 sends the Signal X
before Service2_SD1 awaits the Signal. The methods
of Service1_SD1 and Service2_SD1 are written in
pseudo-code that resemble literally the corresponding
fUML actions. We thought about employing the
Action Language for Foundational UML (Alf, 2013)
to denote the resulting fUML, but found the pseudo-
code simpler to understand for non-Alf experts,
though.

4.2 Evaluation

The proof-of-concept has confirmed the general
applicability of our idea. We were able to (manually)
translate the UML Interaction to a fUML Activity and
execute the Activity afterwards.

However, we spared on purpose more complex
aspects such as how Interactions integrate with other
behaviors and composite structures, and more
complicated building blocks (e.g., guards on
CombinedFragements, nested CombinedFragments,
Gates, creation/deletion of Lifelines etc.). These
aspects are subject to future research.

4.3 Faced Issues

The most severe fUML issue we encountered was the
missing of CallEvents and corresponding Actions like
AcceptCallEvent etc. Additionally, a
CallOperationAction is currently only allowed to be
synchronous, which is not sufficient for Interactions.
The lack of CallEvents leads to a situation where a
Lifeline may only actively wait for SignalEvents, but
not for CallEvents. Besides, the ongoing work on the
precise semantics for executable state machines
already identified the need to treat Signal sending and
Operation invocation equally based on the event
handing mechanism. There has already been an issue
submitted to OMG for this. We overcame this
shortcoming by mapping Messages with
MessageKind set to asynchCall and synchCall to
SendSignalActions and AcceptEventActions. For
future versions of fUML, however, we hope that the
missing Actions are incorporated into the language.
The fact that the work on PSSM introduces

CallEvents, we are confident that they will become
part of fUML as well rather soon.

Another fUML issue we found is that it does not
support the concept of owned behaviors unless they
represent the method of an Operation. This excludes
the BehaviorExecutionSpecification from the
mapping for it does not have an added value anymore.
Since it is not possible to pass parameters from the
calling Lifeline to an Behavior referenced from a
BehaviorExecutionSpecification and a Behavior
cannot be stand-alone owned by a Class, the only
behavior that could invoked by
BehaviorExecutionSpecifications is a context-free
Activity with optional or no parameters at all. Such
an invocation is of very limited use. We propose an
improvement to fUML to allow also context-aware,
stand-alone owned behaviors as well as a solution to
pass Parameters into
BehaviorExecutionSpecifications.

A third big, yet UML Interactions issue that needs
attention is the lack of concepts for describing data
flows. We hope that this issue will be eventually
addressed by executable UML state machine where it
is also required to access the data received by an
InvocationEvent for further processing (e.g., in
Transition guards and effects). Without data flow
mechanism, the use of Interaction for execution is
limited to the simulation of high- level specifications
where arguments of Messages have to be provide
always a priori. Such simulations may have their use,
but waste a lot of potential. We argue for addressing
the lack of data flow concepts in UML Interactions
rather sooner than later.

Apart from the issues that belong to fUML or
UML itself, there are a number of unresolved or
unclear mapping rules in our approach that need
further investigation. In this position paper, however,
we only discussed the mapping rules we had tried out
and verified so far. The UML Interactions metamodel
offers further metaclasses (such as Gate,
PartDecomposition, creation Message) that we have
not yet addressed.

5 CONCLUSIONS

In this position paper, we reported first results of our
preliminary work in the realm of executable UML
Interactions by relying on fUML semantics. We
argued why it make sense to strive for executable
Interactions, represented first and foremost by
sequence diagrams. We discussed the necessity for
the shift from descriptive UML Interactions to
prescriptive executable Interactions. Based on this,

Towards Executable UML Interactions based on fUML

409

we described a set of fundamental mapping rules
from the Interaction metamodel to the fUML
metamodel. A simple example was presented for
which we depicted a pseudo fUML snippet. Finally,
we raised awareness for open issues in fUML and
UML that we faced during our (manual) translation.
This approach is, to the best of our knowledge, the
first attempt to translate Interactions to fUML.

One surprising finding is that Interactions and
Activities, apart from fundamentally different
building blocks, are actually quite close to each other.
Even if not reported in this position paper, we have
identified suitable mappings for almost all concepts
in Interactions. Some of those mappings (which we
spared in this paper) are based on the assumption that
fUML supports the execution of context-aware
owned behaviors and CallEvents.

In particular the seamless integration of
executable Interactions with other executable UML
behaviors and the precise semantics of composite
structures needs more attention. For the sake of
simplicity, we treated Interactions in an isolated way
in our work. This led to a working, but autarkic proof-
of-concept. Such an autarkic view is suitable in order
to focus on the executable semantics of building
blocks firstly, but for a realistic application of
executable specifications, the seamless integration
needs to be achieved. Rules and constraints have to
be identified and specified to assist engineers building
such seamless and interworking executable
specification that potentially consist of fUML,
executable state machines, executable Interactions
and precise composite structures.

Future work in that area targets in particular
completion of our mapping rules. We plan
furthermore to support the executable UML working
group at OMG in raising awareness of the issues we
found and in resolving these issues. Our long-term
goal, however, is the utilization of fUML for building
a seamlessly integrated test execution system for
fUML simulations. The upcoming OMG standard
UML Testing Profile 2 enables specifying test case
specifications as Interactions, which are compiled
into executable test cases based fUML.

REFERENCES

Haugen, Ø. and Stølen, K.: STAIRS — Steps to analyze
interactions with refinement semantics. In Proc.
International Conference on UML, 2003.

Haugen, Ø., Husa, K. E., Runde, R. K., and Stølen, K.: Why
timed sequence diagrams require three-event

semantics. In Scenarios: Models, Transformations and
Tools, 2005.

Haugen, Ø., Husa, K.E., Runde, R.K., and Stølen, K.:
STAIRS towards formal design with sequence
diagrams. Journal of Software and Systems Modeling,
2005.

Runde, R. K., Haugen, Ø., Stølen, K.: Refining UML
interactions with underspecification and
nondeterminism. In: Nordic Journal of Computing, 2005.

Lund, M. S., and Stølen, K.: A fully general operational
semantics for UML 2.0 sequence diagrams with
potential and mandatory choice. In: Proceedings of the
14th international conference on Formal Methods
(FM'06), 2006.

Störrle, H.: Semantics of interactions in UML 2.0. In:
Proceedings of IEEE Symposium on Human Centric
Computing Languages and Environments, 2003.

Störrle, H.: Trace Semantics of UML 2.0 Interactions.
Technical report, University of Munich, 2004.

Knapp, A.: A Formal Semantics for UML Interactions. In:
R. France and B. Rumpe (eds.): Proc. 2nd Int. Conf.
Unified Modeling Language (UML’99), 1999.

Cengarle, M., Knapp, A.: UML 2.0 Interactions: Semantics
and Refinement. In: J. Jürjens, E. B. Fernàndez, R.
France, B. Rumpe (eds.): 3rd Int. Workshop on Critical
Systems Development with UML (CSDUML’04),
2004.

Li, M., and Ruan Y.: Approach to Formalizing UML
Sequence Diagrams. In: Proc. 3rd In-ternational
Workshop on Intelligent Systems and Applications
(ISA), 2011.

Shen, H., Virani, A.; Niu, J.: Formalize UML 2 Sequence
Diagrams. In: Proc. 11th IEEE High Assurance
Systems Engineering Symposium (HASE), 2008.

Störrle, H.: Assert, Negate and Refinement in UML-22
Interactions. In: J. Jürjens, B. Rumpe, R. France, and E.
B. Fernandez, Proc. Wsh. Critical Systems
Development with UML (CSDUML’03), 2003.

Harel, D., and Maoz, S.: Assert and negate revisited: modal
semantics for UML sequence diagrams. In: Proc.
International workshop on Scenarios and state
machines: models, algorithms, and tools, 2006.

Knapp, A., and Wuttke, J.: Model Checking of UML 2.0
Interactions. In; Proc. of the 2006 International
conference on Models in Software Engineering
(MoDELS'06), Springer, Heidelberg 2006.

Wendland, M.-F., Haugen, O., and Schneider, M.:
Evolutions of UML Interactions metamodel. In; Proc.
of the 2013 International conference on Models in
Software Engineering (MoDELS'13), Springer,
Heidelberg, 2013.

Damm, W., Harel, D.: LSCs: Breathing Life into Message
Sequence Charts. J. on Formal Methods in System
Design 19 (1), 45–80 (2001). In Proc. 3rd IFIP Int.
Conf. on Formal Methods for Open Object-Based
Distributed Systems (FMOODS’99), 1999.

UML, Object Management Group: Unified Modeling
Language 2.5, http://www.omg.org/spec/UML, 2015.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

410

fUML, Object Management Group: Semantics of a
Foundational Subset for Executable UML 1.1,
http://www.omg.org/spec/FUML/1.1, 2013.

PSCS, Object Management Group: Precise Semantics of
Composite Structures,
http://www.omg.org/spec/PSCS, 2015.

Alf, Object Management Group: Action Language for
Foundational UML, http://www.omg.org/spec/ALF/, 2013.

CL, International Standards Organisation, Common Logic
(CL): a Framework for a Family of Logic-Based
Languages,” ISO/IEC 24707:2007, 2007.

PSL, International Standards Organisation, Process
specification language, ISO 18629-1:2004, 2004.

Towards Executable UML Interactions based on fUML

411

