Table 3: Positionning HBSOGD1 and HBSOGD2 versus HBSO-MAXSAT: results obtained on the DIMACS instances.
Class Instances (n,m) HBSO-MAXSAT HBSOGD1 HBSOGD2
SR (%) Best SR (%) SR (%) Best SR (%) SR (%) Best SR (%)
1-6yes1-1 (50,80) 92,39 97,75 96,06 98,75 96,01 98,75
1-6yes1-2 (50,80) 93,12 97,5 96,14, 98,75 96,4 98,75
1-6yes1-3 (50,80) 90,27 93,75 94,31 97,5 93,99 96,25
aim50 1-6yes1-4 (50,80) 90,01 93,75 93,77 96,25 93,89 96,25
2-0yes1-1 (50,100) 91,96 95 96,07 98 96,06 98
2-0yes1-2 (50,100) 90,53 95 94,53 97 94,17 97
2-0yes1-3 (50,100) 92,13 97 95,86 98 96,05 99
2-0yes1-4 (50,100) 90,39 95 94,53 97 94,51 97
Average 91,35 95,59 95,16 97,66 95,13 97,62
1-6yes1-1 (100,160) 90,93 95 94,53 97 94,51 97
1-6yes1-2 (100,160) 91,96 96,25 95,66 97,5 95,76 98,12
1-6yes1-3 (100,160) 92,91 96,25 96,39 98,75 96,49 98,12
aim100 1-6yes1-4 (100,160) 92,37 96,25 96,48 98,75 96,41 98,75
2-0yes1-1 (100,200) 90,65 94 95,08 97 95,21 96,5
2-0yes1-2 (100,200) 90,34 93,5 94,64 96,5 94,65 96,5
2-0yes1-3 (100,200) 91,33 94 94,5 97,5 96,93 98
2-0yes1-4 (100,200) 92,06 95 95,91 97,5 95,99 98
Average 91,74 95,25 95,67 97,56 95,80 97,62
1 (350,1149) 55,51 60,57 72,55 74,32 72,52 74,32
2 (350,1157) 56,23 61,8 73,2 74,93 73,22 74,5
Parity8 3 (350,1171) 55 59,78 72,16 74,04 72,16 73,7
4 (350,1155) 54,18 58,78 71,26 72,81 71,26 72,81
5 (350,1171) 54,86 59,95 72,04 73,53 72 74,29
Average 55,16 60,18 72,42 73,93 72,23 73,92
Table 4: Positionning HBSOGD1 and HBSOGD2 ver-
sus HBSO-MAXSAT: results obtained on the Uniform
Random-3-SAT instances.
Instances HBSO-MAXSAT HBSOGD1 HBSOGD2
uf20-91 80,79 88,94 92,13
uf50-218 79,35 90,33 93,52
uf75-325 81,13 90,84 94,22
uf100-430 80,40 90,43 90,43
uf125-538 79,64 89,42 92,65
uf150-645 80,68 89,51 90,25
uf175-763 80,89 89,47 90,31
uf200-860 80,57 89,72 92,32
uf225-960 80,33 89,54 90,24
uf250-1065 80,48 89,47 93,26
5 CONCLUSION
In this paper, two extended Bees Swarm Optimiza-
tion algorithms guided by decomposition namely
BSOGD1 and BSOGD2 where proposed for address-
ing the maximal satisfiability problem. The Kmeans
procedure has been chosen for the decomposition
step. In BSOGD1, each bee of the colony consid-
ers as its region only a part of the problem, which
corresponds to a particular cluster. The bee returns
a partial modification of the reference solution be-
cause it can access the variables in only one cluster.
A bee in BSOGD2 can access to all the clusters. To
demonstrate the performance of the two approaches,
two main series of experimentation have been carried
out. First, the results on the DIMACS instances indi-
cate that the two approaches outperform the classical
BSO algorithm. Then, the results obtained on the hard
instances of Uniform-Random-3-SAT reveal that the
second approach benefits from the best exploration of
the decomposition and improves the results obtained
by the first approach. As a short term perspective, we
plan to investigate other metaheuristics to analyze in a
deeper way the effect of a decomposition on the max-
imal satisfiability problem. We also plan to apply the
two proposed approaches to other optimization prob-
lems like the Weighted MAXSAT, the coloring Prob-
lem, and Constraint Satisfaction Problems.
REFERENCES
Davis, M., Logemann, G., and Loveland, D. (1960). A com-
puting procedure for quantification theory. In Journal
of the Association for Computing Machinery.
Drias, H., Sadeg, S., and Yahi, S. (2005). Cooperative bees
swarm for solving the maximum weighted satisfiabil-
ity. In Proceeding of IWANN. SpringerVerlag.
Dubois, O., Andre, P., Y., B., and J., C. (1996). Sat versus
unsat. In Second Dimacs inplementation challenge,