Burke, R. (2000). Knowledge-based recommender sys-
tems. Encyclopedia of Library and Information Sys-
tems, vol. 69, Supplement 32.
Chen, L. and Pu, P. (2012). Critiquing-based recom-
menders: survey and emerging trends. User Model.
User-Adapt. Interact., 22(1-2):125–150.
Cohen, W. W. (1995). Fast effective rule induction. In
ICML, pages 115–123.
de Campos, L. M., Fern
´
andez-Luna, J. M., Huete, J. F., and
Rueda-Morales, M. A. (2010). Combining content-
based and collaborative recommendations: A hybrid
approach based on bayesian networks. Int. J. Approx.
Reasoning, 51(7):785–799.
Dietze, S., SanchezAlonso, S., Ebner, H., Yu, H. Q., Gior-
dano, D., Marenzi, I., and Nunes, B. P. (2013). In-
terlinking educational resources and the web of data:
A survey of challenges and approaches. Program,
47(1):60–91.
Felfernig, A. and Burke, R. (2008). Constraint-based rec-
ommender systems: Technologies and research is-
sues. In ICEC, pages 3:1–3:10.
Felfernig, A., Friedrich, G., Isak, K., Shchekotykhin, K. M.,
Teppan, E., and Jannach, D. (2009). Automated de-
bugging of recommender user interface descriptions.
Appl. Intell., 31(1):1–14.
Felfernig, A., Friedrich, G., Jannach, D., and Zanker, M.
(2011). Developing constraint-based recommenders.
In Recommender Systems Handbook, pages 187–215.
Springer.
Felfernig, A. and Kiener, A. (2005). Knowledge-based in-
teractive selling of financial services with fsadvisor. In
AAAI, pages 1475–1482.
Friedrich, G. and Zanker, M. (2011). A taxonomy for gener-
ating explanations in recommender systems. AI Mag.,
32(3):90–98.
Hall, M. A., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., and Witten, I. H. (2009). The WEKA
data mining software: an update. SIGKDD Expl.,
11(1):10–18.
Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G.
(2010). Recommender Systems - An Introduction.
Cambridge University Press.
Lemire, D. and Maclachlan, A. (2005). Slope one predic-
tors for online rating-based collaborative filtering. In
SDM, pages 471–475.
Mesiti, M., Valtolina, S., Bassis, S., Epifania, F., and Apol-
loni, B. (2014). e-teaching assistant - A social intelli-
gent platform supporting teachers in the collaborative
creation of courses. In CSEDU, pages 569–575.
Mooney, R. J. and Roy, L. (2000). Content-based book rec-
ommending using learning for text categorization. In
DL, pages 195–204.
Pazzani, M. J. and Billsus, D. (1997). Learning and revis-
ing user profiles: The identification of interesting web
sites. Machine Learning, 27(3):313–331.
Peterson, R. A. (1994). A meta-analysis of cronbach’s
coefficient alpha. Journal of Consumer Research,
21(2):381–91.
Pu, P., Chen, L., and Hu, R. (2011a). A user-centric evalua-
tion framework for recommender systems. In RecSys,
pages 157–164.
Pu, P., Faltings, B., Chen, L., Zhang, J., and Viappiani,
P. (2011b). Usability guidelines for product recom-
menders based on example critiquing research. In
Recommender Systems Handbook, pages 511–545.
Springer.
Quinlan, J. R. (1993). C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann.
Ren, L., He, L., Gu, J., Xia, W., and Wu, F. (2008). A
hybrid recommender approach based on widrow-hoff
learning. In FGCN (1), pages 40–45.
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and
Riedl, J. (1994). Grouplens: An open architecture for
collaborative filtering of netnews. In CSCW, pages
175–186.
Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001).
Item-based collaborative filtering recommendation al-
gorithms. In WWW, pages 285–295.
Shinde, S. K. and Kulkarni, U. (2012). Hybrid personalized
recommender system using centering-bunching based
clustering algorithm. Expert Syst. Appl., 39(1):1381–
1387.
CSEDU 2016 - 8th International Conference on Computer Supported Education
382