seconds), see Figure 5.1.
We consider the quadratic program:
..
2,
1..
.
(3)
Figure 5.1: Comparison of the CPU with SDPA classic
and SDPA new variant.
6 CONCLUSION AND FUTURE
WORKS
In this paper, we have applied a new procedure to
solve the SDP in optimal time. The logarithmic
barrier approach with the technique of upper-
approximaty functions reduce the computational cost
of the algorithm compared with classical methods.
The preliminaries numerical results show the
performance of this procedure. This work opens
perspectives for exploring the potentiality of
semidefinite programming to provide tight
relaxations of NP-hard, combinatorial and quadratic
problems. Our future work is to program another
line-searches and another barrier functions. We will
test the performance of the algorithms with the
SDPLIB collection of SDP test problems (Borchers,
1999) .
REFERENCES
Alizadeh, F., 1995. Interior point methods in semidefinite
programming with application to combinatorial
optimization, SIAM journal on Optimization, 5:13–51.
Alizadeh, F., Haberly, J.-P., and Overton, M.-L.. 1998.
Primal-dual interior-point methods for semidefinite
programming, convergence rates, stability and
numerical. SIAM J. Optim.8 746–768.
Benterki, D., Crouzeix, J.-P., and Merikhi., B., 2003. A
numerical implementation of an interior point method
for semi-definite programming. Pesquisa Operacional
23–1, 49–59.
Fujisawa, K. and Kojima, M., 1995. SDPA(Semidefinite
Programming Algorithm) Users Manual. Technical
Report b-308, Tokyo Institute of Technology.
Jarre. F., 1993. An interior-point method for Programming
minimizing the maximum eigenvalue of a linear
combination of matrices. SIAM Journal on Control
and Optimization, 31:1360–1377.
Nesterov Y. E., and Nemirovskii. A. S., 1990.
Optimization over positive semidefinite matrices:
Mathematical background and user’s manual.
Technical report, Central Economic & Mathematical
Institute, USSR Acad. Sci. Moscow, USSR.
Nesterov Y. E., and Nemirovskii. A. S., 1993. Interior
Point Polynomial Methods in Convex Programming :
Theory and Algorithms. SIAM Publications,
Philadelphia.
Vandenberghe, L. and Boyd. S., 1995. Primal-dual
potential reduction method for problems involving
matrix inequalities. Mathematical Programming,
69:205-236.
Nesterov, Y.E., and Nemirovskii, A.S., 1994. Interior-
Point Polynomial Algorithms in Convex
Programming. SIAM Studies in Applied Mathematics
13. SIAM, Philadelphia, PA, USA. 185, 461, 564, 584,
602.
Nesterov, Y. E., and Todd, M. J., 1995. Primal-dual
interior-point methods for self-scaled cones. Technical
Report 1125, School of Operations Research and
Industrial Engineering, Cornell University, Ithaca,
New York, 14853-3801.
Crouzeix, J.P. Merikhi, B., 2008, A logarithm barrier
method for semidefinite programming, R.A.I.R.O-
Oper. Res. 42, pp. 123-139.
Benterki, D., Merikhi, B., 2001. A modified algorithm for
the strict feasibility problem, RAIRO Oper. Res. 35,
pp. 395-399.
Monteiro, R.D.C., 1997. Primal-dual path- following
algorithms for semidefinite programming. SIAM
Journal on Optimization, 7, pp. 663-678.
Derkaoui, O., Lehireche, A, 2014. Safe bounds in
Semidefinite programming by using interval
arithmetic. American Journal of Operations Research,
Vol. 4 No. 5, septembre, PP. 293-300. DOI:
10.4236/ajor.2014.45029.
Helmberg, C., Rendl, F., Vanderbei, R.J., and
Wolkowicz, H., 1996. An interior point method for
semidefinite programming. SIAM Journal on
Optimization, 6:342–361.
Monteiro, R. D. C., and Tsuchiya, T., 1996. Polynomial
convergence of a new family of primal-dual
algorithms for semidefinite programming.Technical
report, Georgia Institute of Technology,Atlanta,
Georgia, USA.
Mehrotra, S., 1992. On the implementation of a primal-
dual interior point method, SIAM Journal on
Optimization 2 575-601.
Monteiro, R. D. C., 1997. Primal-dual path following
algorithms for semidefinite programming, SIAM
Journal on Optimization 7 663-678.
Nakata, M., Nakatsuji, H., Ehara, M., Fukuda, M.,