dependences of electrode potentials on electrolyte
concentrations in various solutions revealed that our
selected signal processing and amplification method
is adequate to obtain readable data.
Considering analytical and technical features of
the biosensor designs, it seems that benefits of the
amperometric sensor hold the edge over choosing the
latter in designing the commercial analyser. Together
with electrolyte electrodes, such multi-parameter
point-of-care blood and dialysis fluid analyser would
help in better outcomes and hemodialysis procedure
corrections for patients diagnosed with various stage
renal failures.
ACKNOWLEDGEMENTS
This work has been supported by Lithuanian Agency
for Science, Innovation and Technology Project E!
8835, National Academy of Sciences of Ukraine and
STCU project No. 6052.
REFERENCES
Ahuja, T., Kumar, D., Singh, N., Biradar, A. M., Rajesh,
2011. Potentiometric urea biosensor based on multi-
walled carbon nanotubes (MWCNTs)/silica composite
material. Materials Science and Engineering: C, vol.
31, pp. 90-94.
Boubriak, O. A., Soldatkin, A. P., Starodub, N. F.,
Sandrovsky, A. K., El'skaya, A. K., 1995.
Determination of urea in blood serum by a urease
biosensor based on an ion-sensitive field-effect
transistor. Sensors and Actuators B: Chemical, vol. 27,
pp. 429-431.
Carter, E. L., Flugga, N., Boer, J. L., Mulrooney, S. B.,
Hausinger, R. P., 2009. Interplay of metal ions and
urease. Metallomics, vol. 1, pp. 207-221.
Chen, K., Liu, D., Nie, L., Yao, S., 1994. Determination of
urea in urine using a conductivity cell with surface
acoustic wave resonator-based measurement circuit.
Talanta, vol. 41, pp. 2195-2200.
Dhawan, G., Sumana, G., Malhotra, B. D., 2009. Recent
developments in urea biosensors. Biochemical
Engineering Journal, vol. 44, pp. 42-52.
Iseki, K., Uehara, H., Nishime, K., Tokuyama, K.,
Yoshihara, K., Kinjo, K., Shiohira, Y., Fukiyama, K.,
1996. Impact of the initial levels of laboratory variables
on survival in chronic dialysis patients. American
Journal of Kidney Diseases, vol. 28, pp. 541-548.
Kulys, J. , Gurevičienė, V., Laurinavičius, V., Jonuška, A.
V., 1986. Urease sensors based on differential antimony
electrodes. Biosensors, vol. 2, pp. 35-44.
Kuralay, F., Özyörük, H., Yıldız, A., 2005. Potentiometric
enzyme electrode for urea determination using
immobilized urease in poly(vinylferrocenium) film.
Sensors and Actuators B: Chemical, vol.109, pp. 194-
199.
Laurinavicius, V., Razumiene, J., Gureviciene, V., 2013.
Bioelectrochemical Conversion of Urea on Carbon
Black Electrode and Application. Sensors Journal,
IEEE, vol. 13, pp. 2208-2213.
Liu, D., Meyerhoff, M. E., Goldberg, H. D., Brown, R. B.,
1993. Potentiometric ion- and bioselective electrodes
based on asymmetric polyurethane membranes.
Analytica Chimica Acta, vol. 274, pp. 37-46.
Maduell, F., Moreso, F., Pons, M., Ramos, R., Mora-Macià,
J., Carreras, J., Soler, J., Torres, F., Campistol, J. M.,
Martinez-Castelao, A., 2013. High-Efficiency
Postdilution Online Hemodiafiltration Reduces All-
Cause Mortality in Hemodialysis Patients. Journal of
the American Society of Nephrology, vol. 24, pp. 487-
497.
Marchenko, S. V., Kucherenko, I. S., Hereshko, A. N.,
Panasiuk, I. V., Soldatkin, O. O., El'skaya, A. V.,
Soldatkin, A. P., 2015. Application of potentiometric
biosensor based on recombinant urease for urea
determination in blood serum and hemodialyzate.
Sensors and Actuators B: Chemical, vol. 207, Part B,
981-986.
Mc Causland, F. R., Brunelli, S. M., Waikar, S. S., 2012.
Dialysate sodium, serum sodium and mortality in
maintenance hemodialysis. Nephrology Dialysis
Transplantation, vol. 27, pp. 1613-1618.
Much, W. E., Wilcox, C. S., 1982. Disorders of body fluids,
sodium and potassium in chronic renal failure. The
American Journal of Medicine, vol. 72, pp. 536-550.
Nolph, K. D., Sorkin, M. I., Moore, H., 1980.
Autoregulation of Sodium and Potassium Removal
During Continuous Ambulatory Peritoneal Dialysis.
ASAIO Journal, vol. 26, pp. 334-338.
Parfrey, P. S., Foley, R. N., 1999. The Clinical
Epidemiology of Cardiac Disease in Chronic Renal
Failure. Journal of the American Society of Nephrology,
vol. 10, pp. 1606-1615.
Patton, C. J., Crouch, S. R., 1977. Spectrophotometric and
kinetics investigation of the Berthelot reaction for the
determination of ammonia. Analytical Chemistry, vol.
49, pp. 464-469.
Pavluchenko, A. S., Kukla, A. L., Goltvianskyi, Y. V.,
Soldatkin, O. O., Arkhypova, V. M, Dzyadevych, S. V.,
Soldatkin, A. P., 2011. Investigation of Stability of the
pH-Sensitive Field-Effect Transistor Characteristics.
Sensor Letters, vol. 9, pp. 2392-2396.
Ramirez, G., Brueggemeyer, C. D., Newton, J. L., 1984.
Cardiac Arrhythmias on Hemodialysis in Chronic
Renal Failure Patients. Nephron, vol. 36, pp. 212-218.
Razumiene, J., Sakinyte, I., Barkauskas, J., Baronas, R.,
2015, Nano-structured carbon materials for improved
biosensing applications. Applied Surface Science, vol.
334, pp. 185-191.
Sangodkar, H., Sukeerthi, S., Srinivasa, R. S., Lal, R.,
Contractor, A. Q., 1996. A Biosensor Array Based on
Polyaniline. Analytical Chemistry, vol. 68, pp. 779-783.
Sheliakina, M., Arkhypova, V., Soldatkin, O., Saiapina, O.,
Akata, B., Dzyadevych, S., 2014. Urease-based ISFET