Glaus, P., Honkela, A., and Rattray, M. (2012). Identi-
fying differentially expressed transcripts from RNA-
seq data with biological variation. Bioinformatics,
28(13):1721–1728.
Griebel, T., Zacher, B., Ribeca, P., Raineri, E., Lacroix,
V., Guig
´
o, R., and Sammeth, M. (2012). Modelling
and simulating generic RNA-Seq experiments with
the flux simulator. Nucleic Acids Res, 40(20):10073–
10083.
Guttman, M., Garber, M., Levin, J. Z., Donaghey, J.,
Robinson, J., Adiconis, X., Fan, L., Koziol, M. J.,
Gnirke, A., Nusbaum, C., Rinn, J. L., Lander, E. S.,
and Regev, A. (2010). Ab initio reconstruction of
cell type-specific transcriptomes in mouse reveals the
conserved multi-exonic structure of lincRNAs. Nat
Biotechnol, 28(5):503–510.
Heber, S., Alekseyev, M., Sze, S.-H., Tang, H., and Pevzner,
P. A. (2002). Splicing graphs and EST assembly prob-
lem. Bioinformatics, 18 Suppl 1:S181–S188.
Holland, M. J. (2002). Transcript abundance in yeast
varies over six orders of magnitude. J Biol Chem,
277(17):14363–14366.
Karolchik, D., Barber, G. P., Casper, J., Clawson, H., Cline,
M. S., Diekhans, M., Dreszer, T. R., Fujita, P. A., Gu-
ruvadoo, L., Haeussler, M., Harte, R. A., Heitner, S.,
Hinrichs, A. S., Learned, K., Lee, B. T., Li, C. H.,
Raney, B. J., Rhead, B., Rosenbloom, K. R., Sloan,
C. A., Speir, M. L., Zweig, A. S., Haussler, D., Kuhn,
R. M., and Kent, W. J. (2014). The UCSC Genome
Browser database: 2014 update. Nucleic Acids Res,
42(Database issue):D764–D770.
Kopylova, E. (2013). New algorithmic and bioinformatic
approaches for the analysis of data from high through-
put sequencing. PhD thesis, Universit
´
e des Sciences
et Technologie de Lille-Lille I.
Lemon (2014). Library for Efficient Modeling and
Optimization in Networks. http://lemon.cs.elte.hu/.
Li, B. and Dewey, C. N. (2011). RSEM: accurate transcript
quantification from RNA-Seq data with or without a
reference genome. BMC Bioinformatics, 12:323.
Li, W. (2012). http://alumni.cs.ucr.edu/∼liw/
rnaseqreadsimulator.html.
Li, W., Feng, J., and Jiang, T. (2011). IsoLasso: a LASSO
regression approach to RNA-Seq based transcriptome
assembly. J Comput Biol, 18(11):1693–1707.
M
¨
akinen, V., Belazzougui, D., Cunial, F., and Tomescu,
A. I. (May 2015). Genome-Scale Algorithm Design—
Biological Sequence Analysis in the Era of High-
Throughput Sequencing. Cambridge University Press.
URL www.genome-scale.info.
Ntafos, S. C. and Hakimi, S. L. (1979). On path cover
problems in digraphs and applications to program test-
ing. IEEE Transactions on Software Engineering, SE-
5(5):520–529.
Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T.-C.,
Mendell, J. T., and Salzberg, S. L. (2015). StringTie
enables improved reconstruction of a transcriptome
from RNA-seq reads. Nat Biotechnol, 33(3):290–295.
Quinlan, A. R. and Hall, I. M. (2010). BEDTools: a flex-
ible suite of utilities for comparing genomic features.
Bioinformatics, 26(6):841–842.
Rizzi, R., Tomescu, A. I., and M
¨
akinen, V. (2014). On
the complexity of Minimum Path Cover with Subpath
Constraints for multi-assembly. BMC Bioinformatics,
15(S-9):S5.
Robinson, M. D., McCarthy, D. J., and Smyth, G. K.
(2010). edgeR: a Bioconductor package for differ-
ential expression analysis of digital gene expression
data. Bioinformatics, 26(1):139–140.
Sharon, D., Tilgner, H., Grubert, F., and Snyder, M. (2013).
A single-molecule long-read survey of the human
transcriptome. Nat Biotechnol, 31(11):1009–1014.
Song, L. and Florea, L. (2013). CLASS: constrained tran-
script assembly of RNA-seq reads. BMC Bioinformat-
ics, 14 Suppl 5:S14.
Tomescu, A. I., Kuosmanen, A., Rizzi, R., and M
¨
akinen, V.
(2013). A novel min-cost flow method for estimating
transcript expression with RNA-Seq. BMC Bioinfor-
matics, 14 Suppl 5:S15.
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A.,
Kwan, G., van Baren, M. J., Salzberg, S. L., Wold,
B. J., and Pachter, L. (2010). Transcript assembly and
quantification by RNA-Seq reveals unannotated tran-
scripts and isoform switching during cell differentia-
tion. Nat Biotechnol, 28(5):511–515.
Vyverman, M. (2014). ALFALFA: Fast and Accurate Map-
ping of Long Next Generation Sequencing Reads. PhD
thesis, Ghent University.
Wu, T. D. and Watanabe, C. K. (2005). GMAP: a genomic
mapping and alignment program for mRNA and EST
sequences. Bioinformatics, 21(9):1859–1875.
On using Longer RNA-seq Reads to Improve Transcript Prediction Accuracy
277