sensitivity analysis. Taking into account the example
presented in this work we showed that the method
can provide valuable information about the most
important parameters that have the greatest impact
on the system output.
Moreover, the work shows that the parameters
rankings for the same model may vary depending on
the applied methodologies. Various parameters
rankings may be sensitive to various changes in
response (e.g. quantitative or qualitative changes).
For this reason the choice of sensitivity analysis
method must be adapted to the purpose of research
and the type of model we investigate. Furthermore it
is a good practice to examine the sensitivity of the
system using various methods and compare the
results.
ACKNOWLEDGEMENTS
The work has been supported by the NCN grants
DEC-2013/11/B/ST7/01713 (MKardynska, JS) and
DEC-2012/05/B/NZ2/01618 (AN, PJ, PW,
MKimmel).
REFERENCES
Locke J.C.W., Southern M.M., Kozma-Bognar L.,
Hibberd V., Brown P.E., Turner M.S., and Millar A.J.,
(2005) Extension of a genetic network model by
iterative experimentation and mathematical analysis,
MolSystBiol 1, 0013.
Voit E., Neves A.R., and Santos H. (2006) The intricate
side of systems biology, PNAS 103, 9452–9457.
Maerkl S.J. and Quake S.R., (2007) A systems approach to
measuring the binding energy landscapes of
transcription factors, Science 315, 233–237.
Rand D.A., (2008) Mapping the global sensitivity of
cellular network dynamics, J. Royal Society Interface
5, 59–69.
Gutenkunst R.N., Watefall J.J., Casey F.P., Brown K.S.,
Myers C.R., and Sethna J.P., (2007) Universally
sloppy parameter sensitivities in systems biology
models, PLoS Computational Biology 3, 1871–1878.
Kim K.A., Spencer S.L., Albeck J.G., Burke J.M., Sorger
P.K., Gaudet S., and Kim H., (2010) Systematic
calibration of a cell signaling network model, BMC
Bioinformatics 11, 202.
Marin-Sanguino A., Gupta S.K., Voit E.O., and Vera J.,
(2011) Biochemical pathway modeling tools for drug
target detection in cancer and other complex diseases,
Methods in Enzymology 487, 319–369.
Smieja J., Kardynska M., Naumowicz A., Janus P.,
Widlak P., Kimmel M., (2015) In Silico Analysis of
Interactions Between NFkB and HSF Pathways,
Proceedings of the International Conference on
Bioinformatics Models, Methods and Algorithms,
Oscar Pastor, Christine Sinoquet, Ana Fred, Hugo
Gamboa and Dirk Elias (eds.), Lisbon, Portugal, 201-
206.
Cataldi A., Rapino M., Centurione L., Sabatini N., Grifone
G., Garaci F., Rana R., (2003) NF-κB activation plays
an antiapoptotic role in human leukemic K562 cells
exposed to ionizing radiation, Journal of Cellular
Biochemistry 89, 956–963.
Hayden, M.S., and Ghosh, S. (2012) NF-κB, the first
quarter-century: remarkable progress and outstanding
questions. Genes Dev. 26, 203–234.
Perkins, N.D. (2012) The diverse and complex roles of
NF-κB subunits in cancer. Nat. Rev. Cancer 12, 121–
132.
Janus P., Pakula-Cis M., Kalinowska-Herok M., Kashchak
N., Szołtysek K., Pigłowski W., Widlak W., Kimmel
M., Widlak P., (2011) NF-kB signalling pathway is
inhibited by heat shock independently of active
transcription factor HSF1 and increased levels of
inducible heat shock proteins, Genes to Cells 16,
1168–1175.
Lipniacki T., Paszek P., Brasier A.R., Luxon B., Kimmel
M., (2004) Mathematical model of NF-κB regulatory
module, J TheorBiol 228, 195–215.
Szymańska Z., Zylicz M., (2009) Mathematical modelling
of heat shock protein synthesis in response to
temperature change, J TheorBiol 259, 562–569.
Sobol I., (2001) Global sensitivity indices for nonlinear
mathematical models and their Monte Carlo estimates,
MathComp Sim, 55, 271-280.