targeted brain circuits. J Neurosci.; 26(41):10380–
10386.
Dufour, S., De Koninck, Y., 2015. Rewiev: Optrodes for
combined optogenetics and electrophysiology in live
animals, Neurophotonics 2(3), 031205-14.
Feldbauer, K., Zimmermann, D., Pintschovius, V., Spitz, J.,
Bamann, C., et al. 2009, Channelrhodopsin-2 is a leaky
proton pump. Proc Natl Acad Sci USA 106: 12317–
12322.
Franklin, G.F., Powell, J.D., and Emami-Naeini, A., 2015.
Feedback control of dynamic systems. (New York:
Prentice Hall).
N. Grossman, V. Poher, M.S. Grubb, et al.: Multi-site
optical excitation using ChR2 and micro LED array, J.
Neural Eng. vol. 7, pp. 16004, 2010.
Gorostiza, P., Isacoff, E.Y., 2008. Optical switches for
remote and noninvasive control of cell signaling.
Science.; 322(5900):395–399.
Gunaydin, L.A., Yizhar, O., Berndt, A., Sohal, V.S.,
Deisseroth, K., Hegemann, P., 2010. Ultrafast
optogenetic control. Nat Neurosci.; 13(3):387–392.
Hales, C.M., Rolston, J.D., Potter, S.M., 2010. How to
culture, record and stimulate neuronal networks on
micro electrode arrays (MEAs) J Vis Exp.;
30(39):2056.
Kale, R., P., Kouzani, A., Z., Walder, K., Berk, M.,
Susannah J. Tye, S., J., 2015. Review: Evolution of
optogenetic microdevices, Neurophotonics, vol 2(3),
031206.
Kim, T., I., McCall, J., G., Jung, Y., H., Huang, X., Siuda,
E., R., Li, Y., Song, J., Song, Y., M., Pao, H., A., Kim,
R., H., Lu, C., Lee, S., D., Song, S., Shin, G., C., Al-
Hasani, R., Kim, S., Tan, M., P., Huang, Y., Omenetto,
F., G., Rogers, J., A., Bruchas, M., R., 2013. Injectable,
cellular-scale optoelectronics with applications for
wireless optogenetics, Science, vol. 340, pp. 211–216.
Kozai, T., D., Y., Vazquez, A., L., 2015. Photoelectric
artefact from optogenetics and imaging on
microelectrodes and bioelectronics: new challenges and
opportunities, J. Mater. Chem. B, vol. 3, pp.4965-4978.
Krook-Magnuson, E., Armstrong, C., Bui, A., Lew, S.,
Oijala, M., and Soltesz, I. 2015. In vivo evaluation of
the dentate gate theory in epilepsy. J. Physiol.
Lin, J.,Y., Lin, M.Z., Steinbach, P., Tsien, R.,Y., 2009.
Characterization of engineered channelrhodopsin
variants with improved properties and kinetics. Biophys
J 96: 1803–1814.
Losonczy, B.V. Zemelman, A. Vaziri, et al.: Network
mechanisms of theta related neuronal activity in
hippocampal CA1 pyramidal neurons, Nat. Neurosci.,
vol. 13, pp. 967–972, 2010.
Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili
N, Berthold, P., Ollig, D., Hegemann, P., Bamberg, E.,
2003. Channelrhodopsin-2, a directly light-gated
cation-selective membrane channel. Proc Natl Acad Sci
USA 100: 13940–13945.
Ozden, I., Wang, J., Lu, Y., May, T., Joonhee Lee, J., Goo,
W., Shea, D.J., Kalanithi, P., Diester, I., Diagne, M.,
Deisseroth, K., Shenoy, K.V., Arto V. NurmikkO,
A.V., 2013. A coaxial optrode as multifunction write-
read probe for optogenetic studies in non-human
primates. J. Neurosci. Meth. 219, 142– 154.
Packer, A.M., Russell, L.E., Dalgleish, H.W.P., and
Hausser, M., 2015. Simultaneous all-optical
manipulation and recording of neural circuit activity
with cellular resolution in vivo. Nat. Methods 12, 140–
146.
Pisanello, F., Sileo, L., Oldenburg, I., A.3, Pisanello, M.,
Martiradonna, L., Assad, J., A., Sabatini, B., L., De
Vittorio, M., 2014. Multipoint-emitting optical fibers
for spatially addressable in vivo optogenetics,” Neuron
82(6), 1245–1254.
Rays A., G., Fibers C., S., M., 1991. Fiber optics.
Riahi, E., Arezoomandan, R., Fatahi, Z., Haghparast, A.,
2015. The electrical activity of hippocampal pyramidal
neuron is subjected to descending control by the brain
orexin/hypocretin system, Neurobiol. Learn Mem.,
119, 93–101.
Royer, S., Zemelman, B., V., Barbic, M., Losonczy A,
Buzsáki, G., Magee, J., C., 2010. Multi-array silicon
probes with integrated optical fibers: Light-assisted
perturbation and recording of local neural circuits in the
behaving animal, Eur. J. Neurosci., vol. 31, pp. 2279–
2291.
Sileo, L., Pisanello, M., Patria, A., D., Emhara, M., S.,
Pisanello, F., Massimo De Vittorio,M., 2015. Optical
Fiber Technologies for in-vivo Light Delivery and
Optogenetics. Transparent Optical Networks (ICTON).
Sparta, D., R., Stamatakis, A., M., Phillips, J., L., Hovelsø,
N., Van Zessen, R., Stuber, G., D., 2012. Construction
of implantable optical fibers for long-term optogenetic
manipulation of neural circuits, Nature Protocols, vol.
7, pp. 12-23.
Tufail, Y., Matyushov, A., Baldwin, N., Tauchmann, M.L.,
Georges, J., Yoshihiro, A., Tillery, S.I., Tyler, W.J.,
2010. Transcranial pulsed ultrasound stimulates intact
brain circuits. Neuron. 66(5):681–694.
Vo-Dinh, T., 2003. Biomedical Photonics Handbook (Boca
Raton, FL: CRC Press).
Warden, M., R., Cardin, J., A., K. Deisseroth, K., 2014.
Optical neural interfaces, Annu. Rev. Biomed. Eng., vol.
16, pp. 103-129.
Wu, F., Stark, E., Im, M., Cho, I., J., Yoon, E., S., Buzsáki,
G., Wise, K., D., Yoon, E., 2013. An implantable neural
probe with monolithically integrated dielectric
waveguide and recording electrodes for optogenetics
applications, Journal of Neural Engineering, vol. 10,
pp. 056012.
Yizhar, O., Fenno, L., E., Davidson, T., J., Mogri, M.,
Deisseroth, K., 2011. Optogenetics in neural systems,
Neuron, vol. 71, pp. 9-34.
Zhang, F., Wang, F.L., Boyden, E.S., Deisseroth, K., 2006.
Channelrhodopsin-2 and optical control of excitable
cells, Nat. Methods 3(10), 785-792.