Figure 1: P300 analysis from a single subject. Average from
120 target images (30 target images from all sessions).
Figure 2: Topographic map of evoked potentials from Fig-
ure 1.
None of this data was cleaned from additional ar-
tifacts, for example, eye movement electromyography
signals or invalidation of time window epochs. At this
stage it necessary to evaluate a preprocessing algo-
rithm that better suit the research purpose.
ACKNOWLEDGEMENTS
This study was produced with FEI, CAPES and
FAPESP funding.
REFERENCES
Deserno, T. M., Antani, S., and Long, R. (2009). Ontology
of gaps in content-based image retrieval. Journal of
digital imaging, 22(2):202–15.
Donchin, E. and Arbel, Y. (2009). P300 based brain
computer interfaces: A progress report. In Lecture
Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), volume 5638 LNAI, pages 724–
731.
Donchin, E., Ritter, W., and McCallum, C. (1978). Cogni-
tive psychophysiology: The endogenous components
of the ERP.
Duffy, F. H., Iyer, V. G., and Surwillo, W. W. (1999).
Eletroencefalografia Cl´ınica e Mapeamento Cerebral
Topogr´afico: Tecnologia e Pr´atica. Revinter Ltda, 1
edition.
Duvinage, M., Castermans, T., Dutoit, T., Petieau, M.,
Hoellinger, T., Saedeleer, C., Seetharaman, K., and
Cheron, G. (2012). A P300-based quantitative com-
parison between the emotiv epoc headset and a med-
ical EEG device. Proceedings of the 9th IASTED In-
ternational Conference on Biomedical Engineering,
BioMed 2012, pages 37–42.
Ekanayake, H. (2010). P300 and Emotiv EPOC: Does
Emotiv EPOC capture real EEG? Web publication
http://neurofeedback. visaduma. info/ . .., page 16.
Emotiv, S. (2011). EMOTIV EPOC: Brain Computer Inter-
face & Scientific Contextual EEG.
Farwell, L. a. and Donchin, E. (1988). Talking Off the Top
of Your Head. electroencephalography and clinical
Neurophysiology, 70(6):510–523.
Fei-Fei, L., Fergus, R., and Perona, P. (2007). Learning gen-
erative visual models from few training examples: An
incremental Bayesian approach tested on 101 object
categories. Computer Vision and Image Understand-
ing, 106(1):59–70.
Gramfort, A., Luessi, M., Larson, E., Engemann, D. A.,
Strohmeier, D., Brodbeck, C., Goj, R., Jas, M.,
Brooks, T., Parkkonen, L., and H¨am¨al¨ainen, M.
(2013). MEG and EEG data analysis with MNE-
Python. Frontiers in Neuroscience, (7 DEC).
Healy, G. and Smeaton, A. (2011). Optimising the number
of channels in EEG-augmented image search. Pro-
ceedings of the 25th BCS Conference on . .., pages
1–6.
Khosla, D., Bhattacharyya, R., Tasinga, P., and Hu-
ber, D. J. (2011). Optimal Detection of Objects
in Images and Videos Using Electroencephalography
(EEG) Deepak. In Kadar, I., editor, SPIE Defense,
Security, and Sensing, pages 80501C–80501C–11. In-
ternational Society for Optics and Photonics.
Liu, Y., Zhang, D., Lu, G., and Ma, W. Y. (2007). A sur-
vey of content-based image retrieval with high-level
semantics. Pattern Recognition, 40:262–282.
Mohedano, E., Healy, G., McGuinness, K., Gir´o-i Nieto,
X., O’Connor, N. E., and Smeaton, A. F. (2014). Ob-
ject Segmentation in Images using EEG Signals. In
Proceedings of the ACM International Conference on
Multimedia - MM ’14, pages 417–426, New York,
New York, USA. ACM Press.
Oliphant, T. E. (2007). SciPy: Open source scientific tools
for Python. Computing in Science and Engineering,
9:10–20.
P´erez, F. and Granger, B. E. (2007). IPython: A system for
interactive scientific computing. Computing in Sci-
ence and Engineering, 9(3):21–29.
Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E.,
Delannoy, V., Bertrand, O., and L´ecuyer, A. (2010).
OpenViBE: An Open-Source Software Platform to
Design, Test, and Use Brain–Computer Interfaces in
Real and Virtual Environments.
Somol, P., Pudil, P., Novoviˇcov´a, J., and Pacl´ık, P. (1999).
Adaptive floating search methods in feature selection.
Pattern Recognition Letters, 20(11-13):1157–1163.