system dynamically perform architecture-based adap-
tation to meet run-time quality requirements (such as
availability, performance, resilience, and greenness).
Architecture tactics could support the realization of
this last aim (see, for example, the work in (Miran-
dola et al., 2014)), but only if embedded at design
time into the TOSCA cloud topology of the applica-
tion and enabled/disabled at run-time accordingly.
ACKNOWLEDGEMENTS
This work is supported in part by the EC H2020 pro-
gram, project EscudoCloud (644579), by the Apulia
Region initiative ”Future in Research”, and by the
PON MIUR Edoc@work 3.0.
REFERENCES
Andrikopoulos, V., Binz, T., Leymann, F., and Strauch, S.
(2013). How to adapt applications for the cloud envi-
ronment - challenges and solutions in migrating appli-
cations to the cloud. Computing, 95(6):493–535.
Binz, T., Breitenb
¨
ucher, U., Kopp, O., and Leymann, F.
(2014). chapter TOSCA: Portable Automated Deploy-
ment and Management of Cloud Applications, pages
527–549. Springer, New York.
Brogi, A., Carrasco, J., Cubo, J., Nitto, E. D., Dur
´
an, F.,
Fazzolari, M., Ibrahim, A., Pimentel, E., Soldani, J.,
Wang, P., and D’Andria, F. (2015). Adaptive man-
agement of applications across multiple clouds: The
seaclouds approach. CLEI Electron. J., 18(1).
Brogi, A., Soldani, J., and Wang, P. (2014). Tosca in a
nutshell: Promises and perspectives. In Villari, M.,
Zimmermann, W., and Lau, K.-K., editors, Service-
Oriented and Cloud Computing, volume 8745 of
Lecture Notes in Computer Science, pages 171–186.
Springer Berlin Heidelberg.
Casale, G., Ardagna, D., Artac, M., Barbier, F., Nitto,
E. D., Henry, A., Iuhasz, G., Joubert, C., Merseguer,
J., Munteanu, V. I., Perez, J. F., Petcu, D., Rossi, M.,
Sheridan, C., Spais, I., and Vladuic, D. (2015). DICE:
quality-driven development of data-intensive cloud
applications. In 7th IEEE/ACM International Work-
shop on Modeling in Software Engineering, MiSE
2015, pages 78–83. IEEE.
Copil, G., Moldovan, D., Truong, H.-L., and Dustdar, S.
(2013a). Multi-level elasticity control of cloud ser-
vices. In Service-Oriented Computing, pages 429–
436. Springer.
Copil, G., Moldovan, D., Truong, H.-L., and Dustdar, S.
(2013b). Sybl: An extensible language for controlling
elasticity in cloud applications. In Cluster, Cloud and
Grid Computing (CCGrid), 2013 13th IEEE/ACM In-
ternational Symposium on, pages 112–119. IEEE.
Copil, G., Moldovan, D., Truong, H.-L., and Dustdar, S.
(2013c). Sybl+ mela: Specifying, monitoring, and
controlling elasticity of cloud services. In Service-
Oriented Computing, pages 679–682. Springer.
Dijkstra, E. W. (1959). A note on two problems in connex-
ion with graphs. Numerische Mathematik, 1(1):269–
271.
Dubois, D. J., Valetto, G., Lucia, D., and Nitto, E. D.
(2015). Mycocloud: Elasticity through self-organized
service placement in decentralized clouds. In 8th
IEEE International Conference on Cloud Computing,
CLOUD 2015, pages 629–636. IEEE.
Giannakopoulos, I., Papailiou, N., Mantas, C., Konstanti-
nou, I., Tsoumakos, D., and Koziris, N. (2014). Celar:
automated application elasticity platform. In IEEE In-
ternational Conference on Big Data (Big Data), pages
23–25. IEEE.
Katsaros, G., Kousiouris, G., Gogouvitis, S. V., Kyriazis,
D., Menychtas, A., and Varvarigou, T. A. (2012). A
self-adaptive hierarchical monitoring mechanism for
clouds. Journal of Systems and Software, 85(5):1029–
1041.
Lehrig, S., Eikerling, H., and Becker, S. (2015). Scala-
bility, elasticity, and efficiency in cloud computing:
a systematic literature review of definitions and met-
rics. In Proc. of the 11th International ACM SIG-
SOFT Conference on Quality of Software Architec-
tures, QoSA’15 (part of CompArch 2015), pages 83–
92. ACM.
Mirandola, R., Potena, P., and Scandurra, P. (2014). Adap-
tation space exploration for service-oriented applica-
tions. Sci. Comput. Program., 80:356–384.
Moldovan, D., Copil, G., Truong, H.-L., and Dustdar, S.
(2013). Mela: Monitoring and analyzing elasticity of
cloud services. In Cloud Computing Technology and
Science (CloudCom), 2013 IEEE 5th International
Conference on, volume 1, pages 80–87. IEEE.
Scandurra, P., Raibulet, C., Potena, P., Mirandola, R., and
Capilla, R. (2012). Adapting cloud-based applications
through a coordinated and optimized resource alloca-
tion approach. In CLOSER 2012 - Proceedings of
the 2nd International Conference on Cloud Comput-
ing and Services Science, pages 355–364. SciTePress.
Sofokleous, C., Loulloudes, N., Trihinas, D., Pallis, G.,
and Dikaiakos, M. D. (2014). c-eclipse: An open-
source management framework for cloud applica-
tions. In Euro-Par 2014 Parallel Processing, pages
38–49. Springer.
Trihinas, D., Pallis, G., and Dikaiakos, M. D. (2014).
Jcatascopia: monitoring elastically adaptive applica-
tions in the cloud. In Cluster, Cloud and Grid Com-
puting (CCGrid), 2014 14th IEEE/ACM International
Symposium on, pages 226–235. IEEE.
Wettinger, J., Breitenb
¨
ucher, U., and Leymann, F. (2015).
Compensation and convergence - comparing and com-
bining deployment automation approaches. Int. J. Co-
operative Inf. Syst., 24(3).
CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science
260