or for branches’ advertising purposes. In conclusion,
we will examine the evolution of influential commu-
nities in time, i.e. temporal networks.
REFERENCES
Barbosa, L. and Feng, J. (2010). Robust sentiment detection
on twitter from biased and noisy data. In Proceed-
ings of the 23rd International Conference on Compu-
tational Linguistics: Posters (COLING), pages 36–44.
Blondel, V. D., Guillaume, J., Lambiotte, R., and Lefebvre,
E. (2008). Fast unfolding of community hierarchies
in large networks. Journal of Statistical Mechanics:
Theory and Experiment, P10008.
Choudhury, M. D., Gamon, M., and Counts, S. (2012).
Happy, nervous or surprised? classification of human
affective states in social media. In Proceedings of the
6th International AAAI Conference on Weblogs and
Social Media (ICWSM).
Deitrick, W., Valyou, B., Jones, W., Timian, J., and Hu, W.
(2013). Enhancing sentiment analysis on twitter using
community detection. Communications and Network,
5(3):192–197.
Ekman, P. (1999). Basic Emotions. John Wiley & Sons Ltd,
New York.
Ferrara, E. (2012). A large-scale community structure anal-
ysis in facebook. EPJ Data Science, 1(9).
Fortunato, S. (2010). Community detection in graphs.
Physics Reports, 486(3–5):75–174.
Girvan, M. and Newman, M. E. J. (2002). Com-
munity structure in social and biological networks.
Proceedings of the National Academy of Sciences,
99(12):7821–7826.
Gurini, D. F., Gasparetti, F., Micarelli, A., and Sansonetti,
G. (2014). iscur: Interest and sentiment-based com-
munity detection for user recommendation on twitter.
In 22nd International Conference on User Modeling,
Adaptation, and Personalization (UMAP), pages 314–
319.
Java, A., Song, X., Finin, T., and Tseng, B. (2007). Why
we twitter: Understanding microblogging usage and
communities. In Proceedings of the 9th WebKDD and
1st SNA-KDD 2007 Workshop on Web Mining and
Social Network Analysis, WebKDD/SNA-KDD ’07,
pages 56–65.
Kafeza, E., Kanavos, A., Makris, C., and Chiu, D. (2014a).
Identifying personality-based communities in social
networks. In Advances in Conceptual Modeling,
pages 7–13.
Kafeza, E., Kanavos, A., Makris, C., and Vikatos, P.
(2014b). T-pice: Twitter personality based influen-
tial communities extraction system. In Proceedings of
the 2014 IEEE International Congress on Big Data,
pages 212–219.
Kanavos, A. and Perikos, I. (2015). Towards detecting emo-
tional communities in twitter. In 9th IEEE Interna-
tional Conference on Research Challenges in Infor-
mation Science RCIS, pages 524–525.
Kanavos, A., Perikos, I., Vikatos, P., Hatzilygeroudis, I.,
Makris, C., and Tsakalidis, A. (2014a). Conversation
emotional modeling in social networks. In 24th IEEE
International Conference on Tools with Artificial In-
telligence (ICTAI), pages 478–484.
Kanavos, A., Perikos, I., Vikatos, P., Hatzilygeroudis, I.,
Makris, C., and Tsakalidis, A. (2014b). Modeling
retweet diffusion using emotional content. In Artifi-
cial Intelligence Applications and Innovations AIAI,
pages 101–110.
Liu, B. and Zhang, L. (2012). A survey of opinion mining
and sentiment analysis. In Mining Text Data, pages
415–463.
Newman, M. E. J. (2004). Fast algorithm for detecting
community structure in networks. Physical Review E,
69(6):066133+.
Ortony, A., Clore, G. L., and Collins, A. (1988). The Cog-
nitive Structure of Emotions. Cambridge University
Press.
Pak, A. and Paroubek, P. (2010). Twitter as a corpus for sen-
timent analysis and opinion mining. In Proceedings of
the International Conference on Language Resources
and Evaluation (LREC).
Papadopoulos, S., Kompatsiaris, Y., Vakali, A., and Spyri-
donos, P. (2012). Community detection in social
media. Data Mining and Knowledge Discovery,
24(3):515–554.
Perikos, I. and Hatzilygeroudis, I. (2013). Recognizing
emotion presence in natural language sentences. In
14th International Conference on Engineering Appli-
cations of Neural Networks (EANN), pages 30–39.
Plantie, M. and Crampes, M. (2013). Survey on social com-
munity detection. In Social Media Retrieval, Com-
puter Communications and Networks, pages 65–85.
Springer.
Quercia, D., Ellis, J., Capra, L., and Crowcroft, J. (2012).
Tracking ”gross community happiness” from tweets.
In Proceedings of the ACM 2012 Conference on Com-
puter Supported Cooperative Work, CSCW ’12, pages
965–968.
Strapparava, C. and Valitutti, A. (2004). Wordnet-affect:
an affective extension of wordnet. In Proceedings of
International Conference on Language Resources and
Evaluation (LREC), volume 4, pages 1083–1086.
Wang, W., Chen, L., Thirunarayan, K., and Sheth, A. P.
(2012). Harnessing twitter ”big data” for automatic
emotion identification. In Conference on Privacy, Se-
curity, Risk and Trust (PASSAT) and Confernece on
Social Computing (SocialCom), pages 587–592.
Xu, K., Li, J., and Liao, S. S. (2011). Sentiment community
detection in social networks. In Proceedings of the
iConference, iConference ’11, pages 804–805.
Yang, B., Liu, D., and Liu, J. (2010). Discovering commu-
nities from social networks: Methodologies and appli-
cations. In Handbook of Social Network Technologies
and Applications, pages 331–346.
SRIS 2016 - Special Session on Social Recommendation in Information Systems
362