observe which is the best realistic distribution for K
values to adopt with this combination.
As a further element that can affect final
effectiveness of OpenAnswer assessment, we tested
different Conditional Probability Tables (CPTs) for
the level of correctness P(C|K). We started from the
same CPT as for J|K, which entails a distribution
that for each value of C|K=k has its maximum on k-
1. We show the corresponding CPTs (labelled as
CPT1) (in Figure 3 the two cases of 6-valued and 5-
valued grading scale are shown). This CPT differs
from the others for both the choice of the value of C
with maximum probability for each value of K, and
for the fraction of probability assigned to such value.
It is worth underlining that at the moment this is the
same CPT that we use in all experiments for P(J|K).
In the future we plan to test different choices for
P(J|K) too.
C|K A B C D E F
A 0,20 0,09 0,01 0,01 0,01 0,01
B 0,40 0,20 0,09 0,07 0,06 0,01
C 0,20 0,40 0,20 0,12 0,10 0,01
D 0,12 0,20 0,40 0,20 0,18 0,07
E 0,07 0,09 0,20 0,40 0,25 0,20
F 0,01 0,02 0,10 0,20 0,40 0,70
C|K A B C D F
A 0,20 0,09 0,01 0,01 0,01
B 0,40 0,20 0,09 0,07 0,01
C 0,20 0,40 0,20 0,12 0,01
D 0,17 0,26 0,55 0,40 0,12
F 0,03 0,05 0,15 0,40 0,85
Figure 3: CPT1: for each k the probability distribution of
P(C|K=k) in column k, has its maximum on row C=k-1
(the upper table shows the values for the 6-valued grading
scale; the lower table is related to the 5-valued scale).
C|K A B C D E F
A 0,40 0,05 0,05 0,05 0,05 0,02
B 0,30 0,40 0,05 0,05 0,05 0,03
C 0,15 0,25 0,45 0,15 0,10 0,10
D 0,10 0,15 0,20 0,45 0,15 0,15
E 0,04 0,10 0,15 0,15 0,45 0,25
F 0,01 0,05 0,10 0,15 0,20 0,45
C|K A B C D F
A 0,40 0,05 0,05 0,05 0,02
B 0,30 0,40 0,05 0,05 0,03
C 0,15 0,25 0,45 0,15 0,10
D 0,12 0,20 0,28 0,55 0,27
F 0,03 0,10 0,17 0,20 0,58
Figure 4: Second tested CPT2: for each value K=k we
devised a “reasonable” distribution for C values. Again the
two cases of 6- and 5-valued grading scale are shown.
As a second alternative we tested a ”reasonable”
distribution of C values for each value K=k. Figure 4
shows the corresponding CPTs (CPT2). Then we
tested two other CPTs for C that not only
concentrate the highest probability on c=k, but also
assume such probability P(C=k|K=k)=0.5. In both
cases, half conditional probability is concentrated on
the same value the student achieves for K, while the
remaining 0.5 is divided according to some criteria
among the other grades. And in both cases we
assumed a higher probability to achieve a
correctness value which is lower than K than a
higher one. For the first case, we created the
conditional probability distributions P(C|K=’A’) and
P(C|K=’F’), (corresponding to the first and last
column in the CPT), which represent extreme cases,
establishing some “reasonable” relations among
such probabilities. As for the other columns, we
assumed 2/5 of the remaining probability (total 0.20)
to achieve a higher grade, and 3/5 (total 0.30) to
achieve a lower one. Given m the number of higher
(lower) grades to handle, we then computed
=
∑
1
, and assigned to the less probable
grade 0.20 × , to the second less probable
the grade 0.20 × 2 × , and so on
(respectively, 0.20 × , 0.20 × 2 × ,
and so on). Figure 4 shows the resulting CPTs.
C|K A B C D E F
A 0,50 0,20 0,07 0,03 0,02 0,01
B 0,30 0,50 0,13 0,07 0,04 0,03
C 0,10 0,12 0,50 0,10 0,06 0,06
D 0,06 0,09 0,15 0,50 0,08 0,10
E 0,03 0,06 0,10 0,20 0,50 0,30
F 0,01 0,03 0,05 0,10 0,30 0,50
C|K A B C D F
A 0,50 0,20 0,07 0,03 0,02
B 0,30 0,50 0,13 0,07 0,08
C 0,10 0,15 0,50 0,10 0,10
D 0,08 0,10 0,20 0,50 0,30
F 0,02 0,05 0,10 0,30 0,50
Figure 5: CPT3, 6-valued (up) and 5-valued grading
scale): half probability is concentrated on C=k|K=k.
The last CPT tested follows the rules above also
for the first and last columns (K=’A’ and K=’F’),
except that the amount of probability which is not
applicable (the probability to increase the grade for
K=’A’ or decrease it for K=’F’) is summed to
P(C=k|K=k).
We finally evaluated different strategies to map
back the correctness distribution (C) achieved by
each student at the end of the evaluation session into