Bollen, J., Mao, H., & Zeng, X., 2011. Twitter mood
predicts the stock market. Journal of Computational
Science, 2(1), 1-8.
Cambria, E., Schuller, B., Xia, Y., & Havasi, C., 2013. New
avenues in opinion mining and sentiment analysis.
IEEE Intelligent Systems, 28(2), 15-21.
da Silva, N. F., Hruschka, E. R., & Hruschka, E. R. ,2014.
Tweet sentiment analysis with classifier ensembles.
Decision Support Systems, 66, 170-179.
Devi, K. L., Subathra, P., & Kumar, P. N., 2015. Tweet
Sentiment Classification Using an Ensemble of
Machine Learning Supervised Classifiers Employing
Statistical Feature Selection Methods. In Proceedings
of the Fifth International Conference on Fuzzy and
Neuro Computing (FANCCO-2015), pp. 1-13. Springer
International Publishing.
Dietterich, T. G., 2000. Ensemble methods in machine
learning, Proceedings of the First International
Workshop on Multiple Classifier Systems, MCS'00,
Springer-Verlag, London, UK, 2000, 1–15.
Ekman, P., 1999. Basic emotions. Handbook of cognition
and emotion, 45-60.
Fersini, E., Messina, E., & Pozzi, F. A., 2014. Sentiment
analysis: Bayesian Ensemble Learning. Decision
Support Systems, 68, 26-38.
Firmino Alves, A. L., Baptista, C. D. S., Firmino, A. A.,
Oliveira, M. G. D., & Paiva, A. C. D., 2014. A
Comparison of SVM Versus Naive-Bayes Techniques
for Sentiment Analysis in Tweets: A Case Study with
the 2013 FIFA Confederations Cup. In Proceedings of
the 20th Brazilian Symposium on Multimedia and the
Web (pp. 123-130). ACM.
Go, A., R. Bhayani, and L. Huang. 2009. Twitter sentiment
classification using distant supervision. Technical
report, Stanford Digital Library Technologies Project.
Li, S., Zong, C., & Wang, X., 2007. Sentiment
classification through combining classifiers with
multiple feature sets. In Natural Language Processing
and Knowledge Engineering, 2007. NLP-KE 2007.
International Conference on 135-140, IEEE.
Liu, B., 2015. Sentiment Analysis: Mining Opinions,
Sentiments, and Emotions. Cambridge University Press.
Medhat, W., Hassan, A., & Korashy, H., 2014. Sentiment
analysis algorithms and applications: A survey. Ain
Shams Engineering Journal, 5(4), 1093-1113.
Nigam, K., Lafferty, J., & McCallum, A., 1999. Using
maximum entropy for text classification. In IJCAI-99
workshop on machine learning for information
filtering, Vol. 1, 61-67.
Pang, B., & Lee, L., 2008. Opinion mining and sentiment
analysis. Foundations and trends in information
retrieval, 2(1-2), 1-135.
Parrott, W. G., 2001. Emotions in social psychology:
Essential readings. Psychology Press.
Perikos, I., & Hatzilygeroudis, I., 2013, Recognizing
emotion presence in natural language sentences.
Engineering Applications of Neural Networks. Springer
Berlin Heidelberg, 2013. 30-39.
Perikos, I., & Hatzilygeroudis, I., 2016, Recognizing
emotions in text using ensemble of classifiers,
Engineering Applications of Artificial Intelligence.
Qiu, L., Lin, H., Ramsay, J. and Yang, F., 2012. You Are
What You Tweet: Personality Expression and
Perception on Twitter. Journal of Research in
Personality, Vol. 46, Issue 6, 710-718.
Ravi, K., & Ravi, V., 2015. A survey on opinion mining and
sentiment analysis: Tasks, approaches and applications.
Knowledge-Based Systems, 89, 14-46.
Russell, J. A., 1980. A circumplex model of affect. Journal
of personality and social psychology, 39(6), 1161.
Schapire, R. E., 1999. A brief introduction to boosting. In
Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI), Vol. 99,
pp. 1401-1406.
Scherer, K. R., & Wallbott, H. G., 1994. Evidence for
universality and cultural variation of differential
emotion response patterning. Journal of personality
and social psychology, 66(2), 310.
Shaheen, S., El-Hajj, W., Hajj, H., & Elbassuoni, S., 2014.
Emotion Recognition from Text Based on
Automatically Generated Rules. In Data Mining
Workshop (ICDMW), 2014 IEEE International
Conference on, pp. 383-392. IEEE.
Strapparava, C., & Mihalcea, R., 2007. Semeval-2007 task
14: Affective text. In Proceedings of the 4th
International Workshop on Semantic Evaluations, 70-
74, Association for Computational Linguistics.
Wang, G., Sun, J., Ma, J., Xu, K., & Gu, J., 2014. Sentiment
classification: The contribution of ensemble learning.
Decision support systems, 57, 77-93.
Wang, Y., & Pal, A., 2015. Detecting Emotions in Social
Media: A Constrained Optimization Approach.
Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence (IJCAI 2015),
996-1002.
Whitehead, M., & Yaeger, L. 2010. Sentiment mining using
ensemble classification models. In Innovations and
advances in computer sciences and engineering (pp.
509-514). Springer Netherlands.
Xia, R., Zong, C., & Li, S., 2011. Ensemble of feature sets
and classification algorithms for sentiment classification.
Information Sciences, 181(6), 1138-1152.