Collins, R. T. (1996). A space-sweep approach to true
multi-image matching. In Computer Vision and Pat-
tern Recognition, pages 358–363. IEEE.
Dal Poz, A. P., Gallis, R. A., da Silva, J. F., and Martins,
´
E. F. (2012). Object-space road extraction in rural ar-
eas using stereoscopic aerial images. Geoscience and
Remote Sensing Letters, IEEE, 9(4):654–658.
Dice, L. R. (1945). Measures of the amount of ecologic
association between species. Ecology, 26(3):297–302.
Galea, E. R. (2002). Simulating evacuation and circulation
in planes, trains, buildings and ships using the exo-
dus software. Pedestrian and Evacuation Dynamics.
Springer, pages 203–225.
Han, J., Zhang, D., Cheng, G., Guo, L., and Ren, J. (2015).
Object detection in optical remote sensing images
based on weakly supervised learning and high-level
feature learning. Transactions on Geoscience and Re-
mote Sensing, 53(6):3325–3337.
Holz, D., Holzer, S., Rusu, R. B., and Behnke, S. (2012).
Real-time plane segmentation using rgb-d cameras. In
RoboCup 2011: Robot Soccer World Cup XV, pages
306–317. Springer.
Hsu, E. B. and Burkle, F. M. (2012). Cambodian bon om
touk stampede highlights preventable tragedy. Pre-
hospital and disaster medicine, 27(05):481–482.
Hu, J., Razdan, A., Femiani, J. C., Cui, M., and Wonka, P.
(2007). Road network extraction and intersection de-
tection from aerial images by tracking road footprints.
IEEE Transactions on Geoscience and Remote Sens-
ing, 45(12):4144–4157.
Huth, J., Kuenzer, C., Wehrmann, T., Gebhardt, S., Tuan,
V. Q., and Dech, S. (2012). Land cover and land use
classification with twopac: Towards automated pro-
cessing for pixel-and object-based image classifica-
tion. Remote Sensing, 4(9):2530–2553.
Irschara, A., Rumpler, M., Meixner, P., Pock, T., and
Bischof, H. (2012). Efficient and globally optimal
multi view dense matching for aerial images. ISPRS
annals of photogrammetry, remote sensing and spatial
information sciences, 1:227–232.
Jaccard, P. (1908). Nouvelles recherches sur la distribution
florale.
Johnson, C. W. (2008). Using evacuation simulations
for contingency planning to enhance the security and
safety of the 2012 olympic venues. Safety science,
46(2):302–322.
Kl
¨
upfel, H. (2006). The simulation of crowd dynamics at
very large events. Traffic and Granular Flow’05, 5.
Krausz, B. and Bauckhage, C. (2012). Loveparade 2010:
Automatic video analysis of a crowd disaster. Com-
puter Vision and Image Understanding, 116(3):307–
319.
L
¨
ammel, G., Grether, D., and Nagel, K. (2010). The rep-
resentation and implementation of time-dependent in-
undation in large-scale microscopic evacuation simu-
lations. Transportation Research Part C: Emerging
Technologies, 18(1):84–98.
Lin, Y. and Saripalli, S. (2012). Road detection and tracking
from aerial desert imagery. Journal of Intelligent &
Robotic Systems, 65(1-4):345–359.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Com-
puter Vision, 60(2):91–110.
Mas, E., Adriano, B., and Koshimura, S. (2013). An inte-
grated simulation of tsunami hazard and human evac-
uation in la punta, peru. Journal of Disaster Research,
8(2):285–295.
Rudin, L., Osher, S., and Fatemi, E. (1992). Nonlinear total
variation based noise removal algorithms. Physica D:
Nonlinear Phenomena, 60(1):259–268.
Rumpler, M., Wendel, A., and Bischof, H. (2013). Prob-
abilistic range image integration for dsm and true-
orthophoto generation. In Image Analysis, pages 533–
544. Springer.
Schneider, V. and K
¨
onnecke, R. (2001). Simulating evacu-
ation processes with aseri. Pedestrian and Evacuation
Dynamics, pages 301–313.
Shi, C., Zhong, M., Nong, X., He, L., Shi, J., and Feng,
G. (2012). Modeling and safety strategy of passenger
evacuation in a metro station in china. Safety Science,
50(5):1319–1332.
Tang, F. and Ren, A. (2012). Gis-based 3d evacuation sim-
ulation for indoor fire. Building and Environment,
49:193–202.
Taubenb
¨
ock, H., Post, J., Kiefl, R., Roth, A., Ismail, F. A.,
Strunz, G., and Dech, S. (2009). Risk and vulnera-
bility assessment to tsunami hazard using very high
resolution satellite data: The case study of padang, in-
donesia. EARSeL eProceedings, 8(1):53–63.
Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgib-
bon, A. W. (2000). Bundle adjustmenta modern syn-
thesis. In Vision Algorithms: Theory and Practice,
pages 298–372. Springer.
Tsai, J., Fridman, N., Bowring, E., Brown, M., Epstein,
S., Kaminka, G., Marsella, S., Ogden, A., Rika, I.,
Sheel, A., et al. (2011). Escapes: evacuation simula-
tion with children, authorities, parents, emotions, and
social comparison. pages 457–464. AAMAS.
Zhou, H., Kong, H., Wei, L., Creighton, D., and Nahavandi,
S. (2015). Efficient road detection and tracking for
unmanned aerial vehicle. IEEE Transactions on Intel-
ligent Transportation Systems, 16(1):297–309.
APPENDIX
In the Appendix, we show a typical evacuation sim-
ulation scenario where our generated digital map can
be used. We use the map of the Marienhof (Munich,
Germany) generated in Experiment A and utilize the
software tool PedGo (Kl
¨
upfel, 2006) mentioned in
Section 1. The software package comprises three dif-
ferent programs:
• PedEd - Used for editing the map, placing persons
and marking the exits
• PedGo - The simulation program, where various
scenarios can be simulated
GISTAM 2016 - 2nd International Conference on Geographical Information Systems Theory, Applications and Management
134