automated, for example, generating a daily report in
the form of a pdf file that could be sent daily to
them.
For the classification model a possible future
work would be adding a sentiment analysis, a model
that will be trained with data from Facebook of
children (especially messages from chats and posts),
for texts made by the child, thus, the verifier would
not be so manual and an expansion of the sample
space for detection of irregularities would be
completed. Based on the training set, the model is
able to identify words in new texts related
connotations classes for which he was trained, for
example, if classes for sexual harassment
classification are positive, negative, ambiguous and
neutral, the task to classify a word in particular
would be unnecessary and thus the context would
bring us a more precise idea about the risk.
The use of heat maps or graphics could possibly
improve the data presentation in the final report,
easing understanding and providing more utility to
the analysed data. In conjunction to this, psychology
advice on how parents should approach and advise
their children would be a way to improve the work.
REFERENCES
Belloni, M.L., 2001. O que é mídia-educação (Vol. 78).
Autores Associados.
Bombonatto, Q. 2012. Associação Brasileira de
Psicopedagogia. XVI Encontro de Psicopedagogia do
Ceará, na UNICHRISTUS. Fortaleza, Brasil.
Buckingham, D., 2000. After the Death of Childhood:
Growing Up in the Age of Electronic Media.
Bellifemine, F.L., Caire, G. and Greenwood, D., 2007.
Developing multi-agent systems with JADE (Vol. 7).
John Wiley & Sons.
Fire, M., Kagan, D., Elyashar, A. and Elovici, Y., 2014.
Friend or foe? Fake profile identification in online
social networks. Social Network Analysis and Mining,
4(1), pp.1-23.
Kietzmann, J.H., Hermkens, K., McCarthy, I.P. and
Silvestre, B.S., 2011. Social media? Get serious!
Understanding the functional building blocks of social
media. Business horizons, 54(3), pp.241-251.
Campos, L.M.L., 2014. Mineração de Dados com
Detecção de Outliers em Tarefas de Predição de Séries
Temporais, XI Simpósio de excelência em gestão e
tecnologia. SEGET.
Mazman, S.G. and Usluel, Y.K., 2009. The usage of social
networks in educational context. World Academy of
Science, Engineering and Technology, 49(1), pp.404-
408.
Nyce, C. and CPCU, A., 2007. Predictive analytics white
paper. American Institute for CPCU. Insurance
Institute of America, pp.9-10.
Pereira, S.E.F.N., 2009. Redes sociais de adolescentes em
contexto de vulnerabilidade social e sua relação com
os riscos de envolvimento com o tráfico de drogas.
Quinlan, J.R., 1986. Induction of decision trees. Machine
learning, 1(1), pp.81-106.
Yamashita, R., 2009. Facebook4J A most easily usable
Facebook API wrapper in Java. Retrieved from
http://facebook4j.org/en/index.html.
Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P. and Witten, I.H., 2009. The WEKA
data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1), pp.10-18.
Ribeiro, R., Teixeira, M., Wirth, A., Borges, A. and
Enembreck, F. A., 2015. A learning model for
intelligent agents applied to poultry farming. In:
International Conference on Enterprise Information
Systems (ICEIS). Proceedings of the 17th
International Conference on Enterprise Information
Systems (ICEIS), Barcelona, Spain.
Silveira V., Campos, G., Cortés, M., 2014. A Problem-
solving Agent to Test Rational Agents - A Case Study
with Reactive Agents. In: International Conference on
Enterprise Information Systems (ICEIS). Lisbon,
Portugal.
Santin, P. L. L., Freitas, C. O. A., Paraiso, E. C., 2011.
Análise automática de textos de mensagens
instantâneas para detecção de aliciamento sexual de
crianças e adolescentes. V. 2, n. 2, p. 43-59, PUC -
Paraná,.
Silvio, C., 2012. 38% das crianças no Facebook têm idade
abaixo do permitido, LeiaJá, v. 21, n.7, edição 344,
p.18-22, São Paulo.
Lemieux, V., Ouimet, M. and Pereira, S., 2008. Análise
estrutural das redes sociais.