
Towards Automatic Service Level Agreements Information Extraction

Lucia De Marco1,2, Filomena Ferrucci1, M-Tahar Kechadi2, Gennaro Napoli1 and Pasquale Salza1

1Department of Computer Science, University of Salerno, Salerno, Italy
2School of Computer Science, University College Dublin, Dublin, Ireland

Keywords: Cloud Computing, Service Level Agreements, Natural Language Processing, Information Extraction.

Abstract: Service Level Agreements (SLAs) are contracts co-signed by an Application Service Provider (ASP) and the
end user(s) to regulate the services delivered through the Internet. They contain several clauses establishing
for example the level of the services to guarantee, also known as quality of service (QoS) parameters and
the penalties to apply in case the requirements are not met during the SLA validity time. SLAs use legal
jargon, indeed they have legal validity in case of court litigation between the parties. A dedicated contract
management facility should be part of the service provisioning because of the contractual importance and
contents. Some work in literature about these facilities rely on a structured language representation of SLAs in
order to make them machine-readable. The majority of these languages are the result of private stipulation and
not available for public services where SLAs are expressed in common natural language instead. In order to
automate the SLAs management, in this paper we present an investigation towards SLAs text recognition. We
devised an approach to identify the definitions and the constraints included in the SLAs using different machine
learning techniques and provide a preliminary assessment of the approach on a set of 36 publicly available SLA
documents.

1 INTRODUCTION

Service Level Agreement (SLA) concerning the pro-
visioning of IT services is defined as a ‘formal, nego-
tiated, document in qualitative and quantitative terms
detailing the services offered to a customer’ (ITIL,
2016).

The necessity of regulating a fair service out-
sourcing via co-signed SLAs aims to give an explicit
understanding to the end users about what a service
is, where and when it is delivered and how to use it;
also duties and responsibilities of both parties and the
possible interaction of a third party are outlined. This
is very important in the context of cloud computing to
support forensic investigations made especially hard
by the extreme flexible nature of the cloud itself.

The main contents of an SLA concern a definition
and description of the service, some rules and regula-
tions about its delivery, some performance measures
together with possible tolerance intervals about the
levels of the services to guarantee and the pricing and
penalty measures in case such tolerances are not re-
spected. With the purpose of monitoring service levels
a dedicated contract management facility should be a
part of the service provisioning.

Such facility can be applied in the context of cloud

security and log analysis by verifying if some con-
straints are violated. One or more violations can be
symptoms of a cyber-attack in the service infrastruc-
ture. On the other hand a service level violation by
the provider side has a billing consequence aiming to
refund the consumer for the problem.

In literature (see Section 2) it is possible to find
some work concerning these facilities between private
parties, where stipulations are expressed in a structured
language and thus machine-readable from the origin.
Nevertheless, in case of public services the majority of
them relies on the presence of a stipulation expressed
in common natural language. There is no room for
automating the SLAs management in case of public
services if these documents are not recognised in the
first place.

In this paper we introduce an approach to allow
for the automatic extraction of information relevant
for monitoring purposes. We employed the tool of
information extraction GATE1 in order to recognise
the sentences in SLA documents and extract relevant
definitions, values and formulas. We report on a pre-
liminary investigation about the use of the proposed

1General Architecture for Text Engineering (GATE), Uni-
versity of Sheffield, https://gate.ac.uk

Marco, L., Ferrucci, F., Kechadi, M-T., Napoli, G. and Salza, P.
Towards Automatic Service Level Agreements Information Extraction.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 2, pages 59-66
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

59



approach by analysing the performance of 5 differ-
ent classification algorithms on a dataset of 36 SLA
documents of real public services such as Amazon,
Microsoft and Cisco.

The rest of the paper is organised as follows. Re-
lated work about SLA monitoring is illustrated in
Section 2. Then, an examination of SLA contents
is presented in Section 3. The performed preliminary
automation of SLAs text recognition is described in
Section 4 and its effectiveness is assessed in Section 5.
Some conclusions and future work close the paper in
Section 6.

2 RELATED WORK

Automating the management of a textual document is
a big challenge, specially if this document is a con-
tract with legal validity like SLAs stipulated for cloud
services. Several approaches in the literature that ex-
acerbate the automatic management of SLAs and the
different modalities to face this issue are discussed in
this section.

Some work dedicated to manage SLAs decom-
poses the issue by monitoring the single constraints
included in the contract. For instance, a framework
called DESVI (Emeakaroha et al., 2010) proposed by
Emeakaroha et al., is dedicated to monitor the perform-
ances of low level cloud resources in order to detect if
the obtained measures respect the constraints extrac-
ted from SLAs with the goal of detecting Quality of
Service (QoS) violations. This work has been used
by Emeakaroha et al. as a background monitoring
platform (Emeakaroha et al., 2012b) to demonstrate
its efficiency in monitoring a single cloud data centre.
Also Brandic et al. (Brandic et al., 2010) used DESVI
as a low level resource value calculator, but the met-
rics applied on the resources have to output a value
required to match with a specified threshold to pre-
vent possible contractual violations. Morshedlou et
al. (Morshedlou and Meybodi, 2014) proposed a pro-
active resources allocation prototype for reducing the
negative impact of SLA violations and for improving
the level of users satisfaction.

A prototype for an autonomic SLA enhancement
is discussed by Maurer et al. (Maurer et al., 2012). It
behaves as a resource parameter reconfiguration tool
at virtual machine level of cloud infrastructures, with
the main advantage of reducing SLA violations and of
optimizing resource utilisation. Instead, Emeakaroha
et al. (Emeakaroha et al., 2012a) proposed an SLA
monitoring and violation detection architecture that
plays at a cloud application provisioning level, where
some metrics are exploited to monitor at runtime the

resources consumption behaviour and the perform-
ance of the application itself. Cedillo et al. presen-
ted an approach to monitor some cloud services non-
functional SLA requirements (Cedillo et al., 2014). A
middleware interacting with services and applications
at runtime is designed; it analyses the information and
provides some reports as soon as an SLA violation
is identified. SALMonADA (Muller et al., 2014) is
a platform proposed by Muller at. al that utilises a
structured language to represent the SLA, which is
then automatically monitored to detect whether any
violation occurs or not; this detection is performed
by implementing a technique based on a constraint
satisfaction problem.

One of the reasons to implement a dedicated auto-
matic contractual management system can be the detec-
tion of contractual violations to be exploited in many
circumstances, such as forensic readiness activities.
Forensic readiness (Tan, 2001) is a capability aimed at
minimizing the costs of a digital crime investigation
by performing some pro-active and preparatory activ-
ities in a computing environment. The main aim of
our proposal is to contribute towards making automatic
information extraction from SLAs as the essential start-
ing point for any cloud forensic readiness tool.

3 SERVICE LEVEL
AGREEMENTS

In order to interpret the SLAs written in natural lan-
guage using business and legal jargon, we started by
studying their form and recurring patterns. In this
section some definitions and common patterns are de-
scribed, resulting from a literature study and simple
empirical observations.

3.1 Life Cycle

To the best of our knowledge, an SLA follows the life
cycle depicted in the UML state chart diagram (Rum-
baugh et al., 2004) in Figure 1. an SLA is initially
defined via a contractual template, which is custom-
ised by the provider depending on some users variation
requests on the standard offer. For this reason a nego-
tiation phase happens, where solutions to the change
requests are included, together with information about
expenses, penalties and reports. The Co-Signed phase
determines that both entities agree on the actual con-
tractual contents, then the service provisioning can
begin. The SLA has a validity time, that can be either
explicitly expressed with start and end dates or with an
initial date together with a time interval, both included
in the document. Such validity time begins after the

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

60



Revision

Execution

Negotiation Co-SignedTemplate

start

end

Potential
client request

Potential
client changes

Changes
approved by
both parties

Service activation

Time expired Change request

Change request
discarded

Change request
approved

Change requests

Figure 1: SLA Life Cycle (De Marco et al., 2015).

contract is co-signed by both parties in the Execution
phase.

During its life cycle, an SLA can be subject to
revisions to resolve some change requests instantiated
by either parties. In case no solution is reached, the
service provisioning has to be terminated and the SLA
is no longer valid.

3.2 General Contents

One of the biggest issues in automatic SLA monit-
oring is the lack of a standard for representing the
contracts. Nevertheless, some efforts were made in or-
der to outline some SLAs commonalties by Baset et al.
(Baset, 2012), where the anatomy of such contracts is
provided. The authors affirm that an SLA is composed
of:
• the provided service levels and the metrics used

for guaranteeing them;

• the services time duration and their granularity;

• the billing structure;

• the policy about the level measurement;

• the reporting manners about service guarantee vi-
olations.
An SLA is composed of a set of clauses, which de-

scribe all the constraints, behaviours and duties of the
co-signer parties in order to guarantee the level of the
predefined services. For instance, some clauses con-
cern the metrics necessary for measuring the described
services level attributes, such as latency or average
transmission errors rate.

3.3 Structure

The structure of an SLA may differ from one cloud
service provider to another. However, such a con-
tract is composed of several sections. Among these

sections, an SLA can be structured as a set of Ser-
vice Level Objectives (SLOs). In a European Union
guideline document (European Commission and DG
CONNECT Cloud Select Industry Group, 2014) the
described SLOs are catalogued as follows:

• Performance;

• Security;

• Data Management;

• Personal Data Management.

It is reasonable to affirm that an SLA is a set of
SLOs, because each of them describes a single para-
meter without overlapping with the remaining ones.
An SLO is composed of a set of sentences, usually
more than one. A general SLO describes a constraint
about a parameter of a service level included in an
SLA, together with the value and a unit measure and/or
a percentage value of such a parameter. An SLO in
some cases can describe the metrics used by the service
provider to calculate the value of the parameter it in-
dicates. Generally, the description is textual, expressed
in natural language; in some other cases, beside the
textual description, a mathematical formula is textu-
ally described. The time interval to consider is also
an important feature. Every SLA has a validity time
period expressed either explicitly with start and end
dates or with a start date and a time period, such as a
‘billing month’ or a ‘solar year’. The SLOs included
in the SLA are not necessarily constrained during the
same time interval; indeed they can have validity dur-
ing a different time period, which can even end after
the SLA validity time (e.g., the ‘backup retention time’
SLO can finish after the SLA termination); certainly,
no SLO can begin before an SLA starting time.

3.4 SLO Classification

The sentences composing the SLOs can be classified
into the following parts:

1. Definition;

2. Value;

3. Not definition.

The assumption made in this taxonomy is that
every sentence of an SLO can fall only in one class;
a sentence is a sequence of words enclosed in two
full stops, where the initial one is discarded. The sen-
tences composing an SLO can represent either a value
together with an unit measure or percentage for the
constrained parameter or the metric description. Thus,
an automatic procedure has to recognise whether a
sentence of an SLO is a definition, a numeric value
or a text which is not a definition. A subsequent step

Towards Automatic Service Level Agreements Information Extraction

61



of the classification is the identification of mathemat-
ical and textual formulas from the detected definition;
in this way the class Definition can be split in two:
Mathematical formula; Textual formula.

The mathematical formula represents a manner in
which the detected description can be easily translated
into a mathematical formula, namely some strategic
words are recognised, such as adding, divided by, rate,
ratio, etc.

The textual formula instead describes a definition
that outlines a textual description for the metric neces-
sary to the computation of the value of a parameter
included in the SLO, which cannot be represented with
a mathematical formula. It is necessary to mention that
the difference between mathematical and textual for-
mulas is very narrow and a classification algorithm
based on training is not enough to distinguish one
or another. This reason motivates splitting the class
Definition into two subclasses, for which another in-
formation extraction technique is expected.

4 SLAs TEXT RECOGNITION

In order to design and develop an automatic SLA clas-
sifier, some Natural Language Processing (NLP) tech-
niques can be utilised. Such techniques have the aim
to elaborate the document containing an SLA and to
obtain the information about the SLOs necessary to
feed a possible dedicated service monitoring tool.

The principal open-source Information Extraction
(IE) (Grishman, 1997) tools are: Apache OpenNLP,
OpenCalais, DBpedia and GATE. The principal tasks
of OpenNLP are tokenisation, sentence segmenta-
tion, part-of-speech tagging, named entity extraction,
chunking, parsing and co-reference resolution. All
these tasks are present also in OpenCalais and GATE
with a more usable graphical interface. OpenCalais
can annotate documents with rich semantic meta-data,
including entities, events and facts. However, the out-
put of the tool is text enriched by annotations, which
are not user-customisable.

We chose to use GATE for the implementation of
the automatic classifier for SLAs. GATE performs
all the tasks described for the other tools and has the
advantage of being customisable; indeed, it allows to
create customised types of annotations using a Java An-
notation Patterns Engine (JAPE) transducer personal-
isation; also the annotations that the tool produces can
be customised. The most used component from GATE
for this automation is the Information Extraction (IE)
one. The input to the system is a dataset of SLA docu-
ments in many common use formats, such as Microsoft
Word and Adobe Portable Document Format (PDF).

The output of the classifier is composed of the same
documents but with annotations. The annotations are
added to some sentences of the documents and they
correspond to the identified classes described before
(Definition, Value and Not definition).

The implementation of the classifier works follow-
ing two sequential steps:

1. Classification of the sentences of the document
according to the three classes described before;

2. Identification of the mathematical and the textual
formulas included in the Definition class from the
previous step.

4.1 Step 1: Sentences Classification

The ANNIE (A Nearly-New Information Extraction
system) plug-in is the principal and most used compon-
ent of the software GATE. It takes an input document
that is annotated as output of the process. Step 1 is
composed of a pipe of activities, where each depends
on the output of the previous one and gives the input
for the subsequent one. Almost each activity of this
pipe is responsible for implementing and executing a
specific information extraction technique. The whole
pipe of phases composing Step 1 is described in the
following:

1. ‘Document Reset’: this phase is responsible for
deleting all the annotations already included in the
document; it cleans the file so that it is ready for
the whole annotation process;

2. ‘Tokenisation’: the tokeniser component in GATE
implements a word segmentation technique. It
divides the document in tokens, such as numbers,
punctuations, etc. The tokeniser implementation
in GATE uses regular expressions to give an initial
annotation of tokens. Subsequently, for each token
the following features are recognised: the ‘string’
itself; the ‘kind’, which is the set the token belongs
to, such as word, number, symbol or punctuation;
the ‘orth’, meaning the orthographical structure;

3. ‘Gazetteer’: this component is responsible for per-
forming a Named Entity Recognition (NER) tech-
nique. It identifies the names of the entities based
on some lists. Such lists are simple text files with
an entry for each line. Each list represents a set
of names depending on a domain, such as cities,
week days, organisations, etc. An indexation is
present to give access to such lists. As default be-
haviour, the Gazetteer creates a special annotation
named ‘Lookup’ for each entry found in the text.
GATE gives the possibility to create a gazetteer
with personalised lists;

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

62



4. ‘Sentence Splitter’: this component implements a
Sentence Breaking technique. The Sentence Split-
ter divides the text in sentences and utilises a Gaz-
etteer composed of a list of abbreviations that helps
to distinguish the acronyms from the full stops end-
ing the sentences. Every sentence is annotated with
a Sentence type;

5. ‘Part-of-Speech Tagger’: the tagger component of
GATE implements the part-of-speech tagging tech-
nique. Such a component adds to the previously
obtained tokens the correct category, which has to
be intended as a part-of-speech, namely a verb, a
noun, a pronoun, etc. The used lexicon is derived
by a training made on a big dataset of articles of
The Wall Street Journal;

6. ‘Semantic Tagger’: in the ANNIE component such
a tagger is based on the JAPE language, which uses
a mixture of Java code and regular expressions.
This phase is in charge of producing some specific
annotations enriched with additional features (e.g.,
the annotation Person with feature gender and val-
ues male and female; the annotation Location with
feature locType and values region, airport, city,
country, county, province and other). Some val-
ues of the features are derived by the lists used
by the Gazetteer, but they can also be customised
depending on the specific needs. The implemented
technique is the Named Entity Recognition (NER);

7. ‘Orthographic Co-reference (Ortho Matcher) and
Pronominal Co-reference’: this component imple-
ments a co-reference resolution technique. The
Ortho Matcher module allows the adding of rela-
tionships to the entities identified by the Semantic
Tagger. Such a module assigns a type to the annota-
tions that have not been tagged by the Semantic
Tagger. The Pronominal Co-reference module per-
forms a check on the pronouns included in the
document and their context in order to obtain the
flow of references to the same entity the pronoun
is referring to.

After the preprocessing pipe of activities, the ma-
chine learning plug-in included in GATE is executed.
It is responsible for executing a sentence classifica-
tion process, aimed to classify the sentences of the
document depending on the three classes described in
Section 3. In the SLA Classification context several
features are added to a customisation of such machine
learning component in GATE. The input to this com-
ponent is the set of sentences obtained by the Sentence
Splitter. Then, it has to recognise the ‘Class’ which is
an annotation added to the semantic tagger; the feature
of such annotation is type and its values are Definition,
Value, Not definition.

4.2 Step 2: Formulas Identification

This step is dedicated to the extraction of mathematical
formulas and parameter values from the sentences clas-
sified as Definition and Value. The input to this step is
the output of Step 1, namely the classified sentences
of the document given as input. Then, the sentences
annotated as definition or value are elaborated by a
dedicated transducer JAPE file, respectively. The out-
put from this step is an additional feature to the already
existing annotations.

The sentences Definition are analysed token by
token; the current token is matched with a set of math-
ematical keywords, i.e., adding, subtracting, divided
by, rate, etc. At the end of the process two features
are extracted: the formula which is the definition of
the parameter expressed mathematically; the period,
which is the time interval during which the constraint
has to be valid.

From the sentences classified as Value some other
features are extracted: the numeric value of the para-
meter; its unit measure; a condition that determines
how to compare the actual value; the name of the para-
meter; the value time, i.e. is the time period during
which the constraint has to be valid.

5 ASSESSMENT

The whole process of SLA text recognition is assessed
with a preliminary approach in order to validate the
behaviour of the proposed GATE customisation, so
some experiments are run in order to obtain the neces-
sary information. The experiments utilise a total of 36
SLAs where 27 are from some cloud providers and the
remaining 9 are from some SOA-based Web Services.
Two different assessments have been performed, each
concerns a step of the proposed automation, namely
Step 1 and Step 2 described above.

5.1 Step 1: Sentences Classification

The SLA documents have been used to feed the sen-
tence splitter component of the software and then all
the identified sentences have been manually annotated
with the correct class. The number of sentences among
all the 36 SLAs classified as Definition is 71, while
the Value sentences are 39; the total number of iden-
tified sentences is 2016, so the sentences classified
as Not definition and discarded by the assessment is
1906. A leave-one-out cross-validation method has
been performed: the dataset is divided in training set
and test set for a total of 36 runs. In every run, the
training set is composed of 35 SLA documents and

Towards Automatic Service Level Agreements Information Extraction

63



the test set of 1. We run a total of 5 different classi-
fication algorithms: Support Vector Machine (SVM),
Perceptron Algorithm with Uneven Margins (PAUM),
Naive Bayes, K-nearest neighbour (KNN) and C4.5
Decision Tree algorithm.

For the performance analysis, we measured preci-
sion, recall and F-measure. Precision is intended as the
ratio between the number of true positive results (TP),
namely the sentences correctly classified and the sum
of true positives and false positives (FP). Recall is cal-
culated as the ratio between the number of true positive
results and the sum of true positives and false negat-
ives (FN), namely the sentences classified in another
class but actually belonging to it. The F-measure is the
harmonic average of precision and recall, calculated
as:

F-measure = 2∗ Precision∗Recall
Precision+Recall

Some parameters are set for 3 of the 5 classification
algorithms; the 2 left unaltered are Naive Bayes and
C4.5.

The parameters set for SVM are cost and value.
Cost (C) is the soft margin allowed for the errors and
it was set in the range 10−3 to 103 in multiples of
10. Value τ represents the irregular margins of the
classifier. τ is set to 1 and it represents the standard
execution of SVM. When the training set items have
a few positive examples and a big number of negative
ones, τ is set to a value lower than 1 in order to have
a better F-measure; in this experiment the training set
items have some positive examples than negatives, so
τ varies between 0 and 1 with jumps of 0.25.

In PAUM the number of negative and positive mar-
gins can vary. They are set to the values in the fol-
lowing sets: negative margin (n) in −1.5, −1, −0.5, 0,
0.1, 0.5 and 1.0; positive margin (p) in −1, −0.5, 0,
0.1, 0.5, 1, 2, 5, 10 and 50.

In the KNN algorithm the parameter representing
the number of neighbours can vary: the default value
of neighbours number (k) is set to 1, but the more such
a number increases, the more the classification noise
is reduced but it lows the precision; in this experiment
it varies between 1 and 5.

5.1.1 Results

Figures 2 and 3 show the results of the best classifiers
for Definition and Value classes respectively.

The SVM algorithm on the classes Definition and
Value performs an increase of the values for precision,
recall and F-measure coincident with the increase of
the C parameter; they become more stable with C > 1.
The final result is a value for precision, recall and F-
measure lower than 60 %: this is caused by some outfit

that Definition parameters have, not matching with the
most common patterns, which play an influence on the
classification. The Value sentences are not so many,
usually one per document, so the values for precision
and F- measure are lower than 50 % and the recall is
lower than 60 %.

The PAUM algorithm on the class Definition per-
forms irregularly when the parameters n and p increase.
The best results happen with n =−0.5 and p = 0, with
precision and recall > 50% and F-measure a bit lower
than 50 %. On the class Value PAUM performs bet-
ter with n = 0.5 and p = 1, with values for precision,
recall and F-measure lower than 40 %.

K-NN on the classes Definition and Value performs
worse than SVM and PAUM; it classifies worse when
the parameter k increases. The best result on the class
Definition is obtained with k set to 1, but such a result
is worse than SVM and PAUM due to the F-measure
value around 40 %, the precision a bit lower than 50 %
and a recall lower than 40 %. On the class Value, KNN
performs the best results with k = 1 and becoming
stable on k ≤ 4. The best results output an F-measure,
precision and recall values around 30 %.

0.558 0.564
0.534 0.528

0.509
0.490 0.486

0.374
0.404

0.000

0.063

0.125

0.188

0.251

0.314

0.376

0.439

0.502

0.564

SVM PAUM KNN
Classifier

V
al

ue

Type Precision Recall F−measure

Figure 2: Definition class comparison results.

Thus, in our experiment the classification al-
gorithm that behaves better for the classes Definition
and Value is SVM with the cost C parameter set to 1.
It outputs precision and recall values bigger than 55 %
on Definition and a bit lower than 50 % for Value. The
classification algorithms without parameters, namely
C4.5 and Naive-Bayes have bad behaviours, with pre-
cision and recall of 0, indeed they fail to classify the
sentences for both Definition and Value classes.

5.2 Step 2: Formulas Identification

This assessment preliminary phase is dedicated to
verify effectiveness of the transducer components cus-
tomised in GATE and their capability to correctly re-
cognise the mathematical formulas. The utilised data-
set is identical to the one of the previous assessment

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

64



0.495
0.523

0.495

0.368

0.412
0.379

0.319
0.301 0.306

0.000

0.058

0.116

0.174

0.233

0.291

0.349

0.407

0.465

0.523

SVM PAUM KNN
Classifier

V
al

ue

Type Precision Recall F−measure

Figure 3: Value class comparison results.

phase, namely 36 SLAs documents. The training set
is composed of the whole dataset items; every sen-
tence of the documents is manually annotated with
the Definition, Value and Not definition classes. The
mathematical formulas of the 36 documents are 25 on
the total of 71 Definitions annotated. The assessment
utilises some distance formulas to calculate the errors:
the Levenshtein distance, the Jaccard similarity and
the cosine similarity.

The Levenshtein distance represents the minimum
number of elementary changes necessary to transform
string A to string B , where A 6= B . An elementary
change can be the cancellation, replacement or inser-
tion of a single character in A .

The Jaccard similarity is mainly utilised to com-
pare similarity and diversity of sample sets. In this
case the sample is a string and the single elements are
the single words composing it. The value is obtained
as a ratio between the difference of the sizes of union
and intersection sets of words by the size of the union
set.

The similarity cosine is an heuristic technique that
measures the similarity of two numeric vectors by
calculating their cosine. In textual contexts, the vectors
are composed of the frequency of the words considered
in the strings to calculate the similarity on. The word
frequency is the number of times such a word recurs
in a text, so the nth element of the vector represents
the frequency of word k, 0 otherwise. The values of
the vector elements vary in a range for 0 to +1, where
+1 indicated that the both texts include exactly the
same words, but not necessarily in the same order; 0
indicates that both texts have no words in common.

Also a manual semantic analysis is performed on
couples of strings, in order to check if they have a
different meaning in presence of a similar text.

5.2.1 Results

Figure 4 shows the obtained results.
The Levenshtein distance metric performs a check

character by character; the average result is a similarity
value of 91 %. The main difference between the oracle
and the actual results relies on the presence of a blank
space character nearby the parenthesis symbol, which
does not alter the strings. In some cases the similarity
value is lower, between 70 % and 80 % and this is due
to some words being not present in the oracle text, or
some numbers being textually-represented and not by
digits.

The Jaccard similarity metric gives an average res-
ult of 57 %. The reason is due to the checks performed
on single words, where a word is a sequence of charac-
ters enclosed by blank spaces. In the previous metric
the presence of blank spaces was already detected and
such a presence consequently contributes to lower the
average result of the Jaccard metric because a differ-
ence by a final or ending character is interpreted as the
presence of two totally different strings, e.g. ‘month)’
and ‘month )’.

The similarity cosine gives an average result of
71 %. It also verifies the similarity of two strings at
words level, but considering the word frequency in-
stead of the set of characters composing it.

0.905

0.580

0.708

0.000

0.101

0.201

0.302

0.402

0.503

0.603

0.704

0.804

0.905

Levenshtein Distance Jaccard Similarity Cosine Similarity
Metric

V
al

ue

Figure 4: Distance metrics results.

The results of the manual semantic analysis indic-
ates that the implementation output does not differ
much from the oracle. Analysing the details of the
results, the main differences with the oracle concern
again some blank space characters or the representa-
tion of numbers with strings instead of digits, which
do not represent a semantic difference between the two
strings. The manual analysis of the results showed that
the actual output is semantically equal to the oracle.

6 CONCLUSIONS AND FUTURE
WORK

In this paper a preliminary approach for SLAs text
recognition in computing services provisioning is pro-

Towards Automatic Service Level Agreements Information Extraction

65



posed.
Such proposal is then assessed with some classi-

fication algorithms (i.e., SVM, PAUM, Naive Bayes,
KNN and C4.5) running on a dataset of 36 SLAs pub-
licly accessible from service providers. The results
showed that the use of SVM classifier performs bet-
ter than others, nevertheless they are not so good in
terms of the accuracy measures we employed (preci-
sion, recall and F-measure). In the future we intend
to investigate how to improve the approach possibly
using other classifiers.

REFERENCES

Baset, S. A. (2012). Cloud slas: Present and future. ACM
SIGOPS Operating Systems Review, 46(2):57–66.

Brandic, I., Emeakaroha, V. C., Maurer, M., Dustdar, S.,
Acs, S., Kertesz, A., and Kecskemeti, G. (2010). Laysi:
A layered approach for sla-violation propagation in
self-manageable cloud infrastructures. In IEEE Com-
puter Software and Applications Conference Work-
shops (COMPSACW), pages 365–370.

Cedillo, P., Gonzalez-Huerta, J., Abrahão, S. M., and Insfrán,
E. (2014). Towards monitoring cloud services using
modelsrun.time. In Workshop on Modelsrun.time.

De Marco, L., Ferrucci, F., and Kechadi, M.-T. (2015). Slafm
- a service level agreement formal model for cloud com-
puting. In International Conference on Cloud Comput-
ing and Services Science (CLOSER).

Emeakaroha, V. C., Calheiros, R. N., Netto, M. A. S.,
Brandic, I., and De Rose, C. A. (2010). Desvi: An ar-
chitecture for detecting sla violations in cloud comput-
ing infrastructures. In International ICST Conference
on Cloud Computing (CloudComp). Citeseer.

Emeakaroha, V. C., Ferreto, T. C., Netto, M. A. S., Brandic,
I., and De Rose, C. A. F. (2012a). Casvid: Application
level monitoring for sla violation detection in clouds.
In IEEE Annual Computer Software and Applications
Conference (COMPSAC), pages 499–508.

Emeakaroha, V. C., Netto, M. A. S., Calheiros, R. N.,
Brandic, I., Buyya, R., and De Rose, C. A. F. (2012b).
Towards autonomic detection of sla violations in cloud
infrastructures. Future Generation Computer Systems,
28(7):1017–1029.

European Commission and DG CONNECT Cloud Select
Industry Group (2014). Cloud service level agreement
standardisation guidelines.

Grishman, R. (1997). Information extraction: Techniques
and challenges. In Information Extraction: A Mul-
tidisciplinary Approach to an Emerging Information
Technology, pages 10–27. Springer.

ITIL (2016). Information technology infrastructure library
(itil).

Maurer, M., Brandic, I., and Sakellariou, R. (2012). Self-
adaptive and resource-efficient sla enactment for cloud
computing infrastructures. In IEEE International Con-
ference on Cloud Computing (CLOUD), pages 368–
375. IEEE.

Morshedlou, H. and Meybodi, M. R. (2014). Decreasing im-
pact of sla violations: A proactive resource allocation
approach for cloud computing environments. IEEE
Transactions on Cloud Computing, 2(2):156–167.

Muller, C., Oriol, M., Franch, X., Marco, J., Resinas, M.,
Ruiz-Cortés, A., and Rodriguez, M. (2014). Compre-
hensive explanation of sla violations at runtime. IEEE
Transactions on Services Computing, 7(2):168–183.

Rumbaugh, J., Jacobson, I., and Booch, G. (2004). The Uni-
fied Modeling Language Reference Manual. Pearson
Higher Education.

Tan, J. (2001). Forensic readiness, technical report. Tech-
nical report, stake Inc., Cambridge USA.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

66


