0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
2 3 4 5 6 7 8 9 10
Time(ms)
Size of the Query Graph
Turbo
ISO
Sum
ISO
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
2 3 4 5 6 7
Time(ms)
Size of the Query Graph
Turbo
ISO
Sum
ISO
(a) Path Queries. (b) Clique Queries.
Figure 8: Path and Clique Queries.
ACKNOWLEDGEMENTS
This work is partially funded by the French National
Research Agency (ANR) project CAIR (ANR-14-
CE23-0006).
REFERENCES
Basu, M. and BBA, T. K. H. (2006). Data Complexity in
Pattern Recognition. Springer.
Capelle, C., Habib, M., and Montgolfier, F. D. (2002).
Graph decompositions and factorizing permutations.
Discrete Mathematics & Theoretical Computer Sci-
ence - DMTCS, 5(1):55–70.
Chen, C., Lin, C. X., Fredrikson, M., Christodorescu, M.,
Yan, X., and Han, J. (2009). Mining graph patterns
efficiently via randomized summaries. Proc. VLDB
Endow., 2(1):742–753.
Cheng, J., Ke, Y., Ng, W., and Lu, A. (2007). Fg-index:
Towards verification-free query processing on graph
databases. In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’07, pages 857–872, New York, NY, USA.
ACM.
Cordella, L. P., Foggia, P., Sansone, C., and Vento, M.
(2004). A (Sub)Graph Isomorphism Algorithm for
Matching Large Graphs. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 26:1367–
1372.
Dahlhaus, E., Gustedt, J., and McConnell, R. (1997).
Efficient and practical modular decomposition. In
eighth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 26–35.
Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., and Wu, Y. (2010).
Graph pattern matching: From intractable to polyno-
mial time. Proc. VLDB Endow., 3(1-2):264–275.
Fan, W., Li, J., Wang, X., and Wu, Y. (2012). Query
preserving graph compression. In Proceedings of
the 2012 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’12, pages 157–168,
New York, NY, USA. ACM.
Gallagher, B. (2006). Matching structure and semantics: A
survey on graph-based pattern matching. AAAI FS,
6:45–53.
Gallai, T. (1967). Transitiv orientierbare graphen. Acta
Mathematica Hungarica, 18:25–66.
Garey, M. R. and Johnson, D. S. (1979). Computers
and Intractability: A Guide to the Theory of NP-
Completeness.
Habib, M., Montgolfier, F. D., and Paul, C. (2004). A sim-
ple linear-time modular decomposition algorithm for
graphs. Scandinavian Workshop on Algorithm Theory
- SWAT, pages 187–198.
Habib, M. and Paul, C. (2010). A survey of the algorithmic
aspects of modular decomposition. Computer Science
Review, 4(1):41–59.
Han, W.-S., Lee, J., and Lee, J.-H. (2013). Turboiso:
Towards ultrafast and robust subgraph isomorphism
search in large graph databases. In Proceedings of
the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 337–348,
New York, NY, USA. ACM.
He, H. and Singh, A. (2006). Closure-tree: An index struc-
ture for graph queries. In Data Engineering, 2006.
ICDE ’06. Proceedings of the 22nd International Con-
ference on, pages 38–38.
He, H. and Singh, A. K. (2008). Graphs-at-a-time: Query
language and access methods for graph databases. In
Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08,
pages 405–418, New York, NY, USA. ACM.
Khoo, K. G. and Suganthan, P. N. (2001). Multiple rela-
tional graphs mapping using genetic algorithms. pages
727–737.
Lagraa, S. and Seba, H. (2016). An efficient exact algorithm
for triangle listing in large graphs. Data Mining and
Knowledge Discovery, pages 1–20.
Lagraa, S., Seba, H., Khennoufa, R., M’Baya, A., and
Kheddouci, H. (2014). A distance measure for large
graphs based on prime graphs. Pattern Recognition,
47(9):2993 – 3005.
Lee, J., Han, W.-S., Kasperovics, R., and Lee, J.-H. (2013).
An in-depth comparison of subgraph isomorphism al-
gorithms in graph databases. In Proceedings of the
39th international conference on Very Large Data