on smartphones using a multiclass hardware-friendly
support vector machine. In Ambient assisted living
and home care, pages 216–223. Springer.
Barnard, M., Odobez, J.-M., and Bengio, S. (2003). Multi-
modal audio-visual event recognition for football
analysis. In Neural Networks for Signal Processing,
2003. NNSP’03. 2003 IEEE 13th Workshop on, pages
469–478. IEEE.
Beetz, M., von Hoyningen-Huene, N., Kirchlechner, B.,
Gedikli, S., Siles, F., Durus, M., and Lames, M.
(2009). Aspogamo: Automated sports game analysis
models. International Journal of Computer Science in
Sport, 8(1):1–21.
Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu,
R., Desjardins, G., Turian, J., Warde-Farley, D., and
Bengio, Y. (2010). Theano: A CPU and GPU Math
Compiler in Python. In Proceedings of the Python for
Scientific Computing Conference (SciPy), 9.
Breiman, L. (2001). Random forests. Machine Learning,
45(1):5–32.
Carling, C., Williams, A. M., and Reilly, T. (2005). Hand-
book of soccer match analysis: A systematic approach
to improving performance. Psychology Press.
Christopher Mutschler, Holger Ziekow, and Zbigniew
Jerzak (2013). The DEBS 2013 Grand Challenge.
In ACM, editor, Proceedings of the 7th ACM Inter-
national Conference on Distributed Event-Based Sys-
tems, pages 289–294.
Connaghan, D., Kelly, P., O’Connor, N. E., Gaffney, M.,
Walsh, M., and O’Mathuna, C. (2011). Multi-sensor
classification of tennis strokes. In Sensors, 2011
IEEE, pages 1437–1440. IEEE.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20(3):273–297.
Gal, A., Keren, S., Sondak, M., Weidlich, M., Blom, H., and
Bockermann, C. (2013). Grand challenge: The tech-
niball system. In Proceedings of the 7th ACM interna-
tional conference on Distributed event-based systems,
pages 319–324. ACM.
Horton, M., Gudmundsson, J., Chawla, S., and Es-
tephan, J. (2014). Classification of passes in foot-
ball matches using spatiotemporal data. arXiv preprint
arXiv:1407.5093.
Jiang, W. and Yin, Z. (2015). Human activity recognition
using wearable sensors by deep convolutional neural
networks. In Proceedings of the 23rd Annual ACM
Conference on Multimedia Conference, pages 1307–
1310. ACM.
Kautz, T., Groh, B. H., and Eskofier, B. M. (2015). Sensor
fusion for multi-player activity recognition in game
sports.
Mackenzie, R. and Cushion, C. (2013). Performance
analysis in football: A critical review and implica-
tions for future research. Journal of Sports Sciences,
31(6):639–676.
Madsen, K. G. S., Su, L., and Zhou, Y. (2013). Grand chal-
lenge: Mapreduce-style processing of fast sensor data.
In Proceedings of the 7th ACM international confer-
ence on Distributed event-based systems, pages 313–
318. ACM.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E. (2011). Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Peterek, T., Penhaker, M., Gajdo
ˇ
s, P., and Dohn
´
alek, P.
(2014). Comparison of classification algorithms for
physical activity recognition. In Innovations in Bio-
inspired Computing and Applications, pages 123–131.
Springer.
Schuldhaus, D., Zwick, C., K
¨
orger, H., Dorschky, E., Kirk,
R., and Eskofier, B. M. (2015). Inertial sensor-based
approach for shot/pass classification during a soccer
match.
Schwarz, C., Leupold, F., and Schubotz, T. (2012a). Short-
Term Energy Pattern Detection of Manufacturing Ma-
chines with In-Memory Databases - A Case Study.
In ENERGY 2012: The Second International Confer-
ence on Smart Grids, Green Communications and IT
Energy-aware Technologies, pages 7–12.
Schwarz, C., Leupold, F., Schubotz, T., Januschowski, T.,
and Plattner, H. (2012b). Rapid Energy Consumption
Pattern Detection with In-Memory Technology. Inter-
national Journal on Advances in Intelligent Systems,
5:415–426.
von der Gr
¨
un, T., Franke, N., Wolf, D., Witt, N., and Eid-
loth, A. (2011). A real-time tracking system for foot-
ball match and training analysis. In Microelectronic
systems, pages 199–212. Springer.
Recognizing Compound Events in Spatio-Temporal Football Data
35