REFERENCES
Adamopoulos, P. and Tuzhilin, A. (2014). On unexpected-
ness in recommender systems: Or how to better ex-
pect the unexpected. ACM Transactions on Intelligent
Systems and Technology, 5(4):54:1–54:32.
Adomavicius, G. and Tuzhilin, A. (2011). Context-aware
recommender systems. In Recommender Systems
Handbook, pages 217–253. Springer US.
Andr
´
e, P., schraefel, m., Teevan, J., and Dumais, S. T.
(2009). Discovery is never by chance: Designing for
(un)serendipity. In Proceedings of the Seventh ACM
Conference on Creativity and Cognition, pages 305–
314, New York, NY, USA. ACM.
Cantador, I. and Cremonesi, P. (2014). Tutorial on cross-
domain recommender systems. In Proceedings of
the 8th ACM Conference on Recommender Systems,
pages 401–402, New York, NY, USA. ACM.
Celma Herrada,
`
O. (2009). Music recommendation and dis-
covery in the long tail. PhD thesis, Universitat Pom-
peu Fabra.
Corneli, J., Pease, A., Colton, S., Jordanous, A., and Guck-
elsberger, C. (2014). Modelling serendipity in a com-
putational context. CoRR, abs/1411.0440.
de Gemmis, M., Lops, P., Semeraro, G., and Musto, C.
(2015). An investigation on the serendipity problem
in recommender systems. Information Processing &
Management, 51(5):695 – 717.
Dey, A. K. (2001). Understanding and using context. Per-
sonal Ubiquitous Comput., 5(1):4–7.
Ekstrand, M. D., Riedl, J. T., and Konstan, J. A. (2011).
Collaborative filtering recommender systems. Found.
Trends Hum.-Comput. Interact., 4(2):81–173.
Fern
´
andez-Tob
´
ıas, I., Cantador, I., Kaminskas, M., and
Ricci, F. (2012). Cross-domain recommender sys-
tems: A survey of the state of the art. In Spanish
Conference on Information Retrieval.
Foster, A. and Ford, N. (2003). Serendipity and information
seeking: an empirical study. Journal of Documenta-
tion, 59(3):321–340.
Garcin, F., Faltings, B., Donatsch, O., Alazzawi, A., Brut-
tin, C., and Huber, A. (2014). Offline and online eval-
uation of news recommender systems at swissinfo.ch.
In Proceedings of the 8th ACM Conference on Rec-
ommender Systems, pages 169–176, New York, NY,
USA. ACM.
Ge, M., Delgado-Battenfeld, C., and Jannach, D. (2010).
Beyond accuracy: Evaluating recommender systems
by coverage and serendipity. In Proceedings of the
Fourth ACM Conference on Recommender Systems,
pages 257–260, New York, NY, USA. ACM.
Iaquinta, L., Semeraro, G., de Gemmis, M., Lops, P., and
Molino, P. (2010). Can a recommender system in-
duce serendipitous encounters? INTECH Open Ac-
cess Publisher.
Kaminskas, M. and Bridge, D. (2014). Measuring surprise
in recommender systems. In Workshop on Recom-
mender Systems Evaluation: Dimensions and Design.
Kaminskas, M. and Ricci, F. (2012). Contextual music
information retrieval and recommendation: State of
the art and challenges. Computer Science Review,
6(23):89 – 119.
Kapoor, K., Kumar, V., Terveen, L., Konstan, J. A., and
Schrater, P. (2015). ”i like to explore sometimes”:
Adapting to dynamic user novelty preferences. In Pro-
ceedings of the 9th ACM Conference on Recommender
Systems, pages 19–26, New York, NY, USA. ACM.
Lops, P., de Gemmis, M., and Semeraro, G. (2011).
Content-based recommender systems: State of the
art and trends. In Recommender Systems Handbook,
pages 73–105. Springer US.
Maksai, A., Garcin, F., and Faltings, B. (2015). Predict-
ing online performance of news recommender sys-
tems through richer evaluation metrics. In Proceed-
ings of the 9th ACM Conference on Recommender
Systems, pages 179–186, New York, NY, USA. ACM.
Murakami, T., Mori, K., and Orihara, R. (2008). Metrics for
evaluating the serendipity of recommendation lists. In
New Frontiers in Artificial Intelligence, volume 4914
of Lecture Notes in Computer Science, pages 40–46.
Springer Berlin Heidelberg.
Remer, T. G. (1965). Serendipity and the three princes:
From the Peregrinaggio of 1557, page 20. Norman,
U. Oklahoma P.
Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction
to Recommender Systems Handbook. Springer US.
Said, A., Fields, B., Jain, B. J., and Albayrak, S. (2013).
User-centric evaluation of a k-furthest neighbor col-
laborative filtering recommender algorithm. In Pro-
ceedings of the 2013 Conference on Computer Sup-
ported Cooperative Work, pages 1399–1408, New
York, NY, USA. ACM.
Shani, G. and Gunawardana, A. (2011). Evaluating recom-
mendation systems. In Recommender Systems Hand-
book, pages 257–297. Springer US.
Smyth, B., Coyle, M., and Briggs, P. (2011). Communities,
collaboration, and recommender systems in personal-
ized web search. In Recommender Systems Handbook,
pages 579–614. Springer US.
Tacchini, E. (2012). Serendipitous mentorship in music rec-
ommender systems. PhD thesis, Ph. D. thesis., Com-
puter Science Ph. D. School–Universit
`
a degli Studi di
Milano.
Vargas, S. and Castells, P. (2011). Rank and relevance in
novelty and diversity metrics for recommender sys-
tems. In Proceedings of the Fifth ACM Conference
on Recommender Systems, pages 109–116, New York,
NY, USA. ACM.
Zhang, Y. C., S
´
eaghdha, D. O., Quercia, D., and Jambor, T.
(2012). Auralist: Introducing serendipity into music
recommendation. In Proceedings of the Fifth ACM In-
ternational Conference on Web Search and Data Min-
ing, pages 13–22, New York, NY, USA. ACM.
Zheng, Q., Chan, C.-K., and Ip, H. (2015). An
unexpectedness-augmented utility model for making
serendipitous recommendation. In Advances in Data
Mining: Applications and Theoretical Aspects, vol-
ume 9165 of Lecture Notes in Computer Science,
pages 216–230. Springer International Publishing.
WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies
256