25th International Conference, DEXA, Munich,
Germany, September 1-4. Proceedings, Part 1.
Alves, A. L. F., 2014. An Approach for SpatioTemporal
Sentiment Analysis in Microtexts (in Portuguese).
Master Thesis. Federal University of Campina Grande,
Brazil.
Cambria E,, Speer R., Havasi C., and Hussain A., 2010.
SenticNet: A Publicly Available Semantic Resource for
Opinion Mining. In AAAI Fall Fymposium:
Commonsense Knowledge (Vol. 10, p. 02).
Cambria, E.; Schuller, B.; Liu, B.; Wang, H.; Havasi, C.,
2013a. Knowledge-based approaches to concept-level
sentiment analysis. IEEE Intelligent Systems, v. 28, n.
2, p. 12-14.
Cambria, E.; Schuller, B.; Xia, Y.; Havasi, C., 2013b. New
avenues in opinion mining and sentiment analysis. IEEE
Intelligent Systems, v. 28, n. 2, p. 15-21.
Cambria, E.; Song, Y.; Wang, H.; Howard, N., 2014.
Semantic multidimensional scaling for open-domain
sentiment analysis. Intelligent Systems, IEEE, v. 29, n.
2, p. 44-51.
Hogenboom, A.; Frasincar, F.; de Jong, F.; Kaymak, U.,
2015. Using rhetorical structure in sentiment analysis.
Communications of the ACM, v. 58, n. 7, p. 69-77.
Hosmer Jr., D. W., Lemeshow, S., & Sturdivant, R. X.
2013. Applied Logistic Regression. Hoboken, NJ, USA:
John Wiley & Sons, Inc.
Liu, B., 2012. Sentiment Analysis and Opinion Mining.
Synthesis Lectures on Human Language Technologies,
5(1):1–167.
Liu, S. M.; Chen, J. H.., 2015. A multi-label classification
based approach for sentiment classification. Expert
Systems with Applications, v. 42, n. 3, p. 1083-1093.
Pak, A., Paroubek, P., 2010. Twitter as a Corpus for
Sentiment Analysis and Opinion Mining. Proceedings
of the Seventh conference on International Language
Resources and Evaluation LREC’10 pp. 1320–1326.
Pfitzner, R., Garas, A., Schweitzer, F., 2012. Emotional
Divergence Influences Information Spreading in
Twitter. Proceedings of the Sixth International AAAI
Conference on Weblogs and Social Media.
Poria, S.; Gelbukh, A.; Hussain, A.; Das, D., 2013.
Bandyopadhuay, S. Enhanced SenticNet with affective
labels for concept-based opinion mining. IEEE
Intelligent Systems, v. 28, n. 2, p. 31-38.
Rosas, V. P.; Mihalcea, R.; Morency, L.P., 2013.
Multimodal sentiment analysis of Spanish online
videos. IEEE Intelligent Systems, v. 28, n. 3, p. 38-45.
Sharma, A. and Dey S., 2012. A comparative study of
feature selection and machine learning techniques for
sentiment analysis. In Proceedings of the 2012 ACM
Research in Applied Computation Symposium on -
RACS ’12, page 1, New York, USA. ACM Press.
Stieglitz, S., Dang-Xuan, L., 2012. Political
Communication and Influence through Microblogging
- An Empirical Analysis of Sentiment in Twitter
Messages and Retweet Behavior. Proceedings of the
45th Hawaii International Conference on System
Sciences.
Suh, B., Hong, L., Pirolli, P., and Chi, E., 2010. Want to be
Retweeted? Large Scale Analytics on Factors
Impacting Retweet in Twitter Network. IEEE
International Conference on Social Computing / IEEE
International Conference on Privacy, Security, Risk
and Trust.
Harris JK, Mart A, Moreland-Russell S, Caburnay C., 2015.
Diabetes Topics Associated With Engagement on
Twitter. Prev Chronic Dis.
Meier, F., Elsweiler, D., Wilson, M., 2014. More than
Liking and Bookmarking? Towards Understanding
Twitter Favouriting Behaviour. Proceedings of the 8th
International AAAI Conference on Weblogs and Social
Media.
Tsai, A. C. R.; Wu, C. E.; Tsai, R. T. H.; Hsu, J. Y. J., 2013.
Building a concept-level sentiment dictionary based on
commonsense knowledge. IEEE Intelligent Systems, v.
28, n. 2, p. 22-30.
Tsytsarau, M. and Palpanas, T., 2012. Survey on mining
subjective data on the web. Data Min. Knowl. Discov.,
24(3):478–514.
Xia, R.; Zong, C.; Hu, X.; Cambria, E., 2013. Feature
ensemble plus sample selection: domain adaptation for
sentiment classification. Intelligent Systems, IEEE, v.
28, n. 3, p. 10-18.
Weichselbraun, A.; Gindl, S.; Scharl, A., 2013. Extracting
and grounding context-aware sentiment lexicons. IEEE
Intelligent Systems, v. 28, n. 2, p. 39-46.
Wollmer, M.; Weninger, F.; Knaup, T.; Schuller, B.; Sun,
C.; Sagae, K.; Morency, L.P., 2013. Youtube movie
reviews: Sentiment analysis in an audio-visual context.
Intelligent Systems, IEEE, v. 28, n. 3, p. 46-53.