IEEE Transactions on Information Theory, 46(5), pp.
1927-1932.
Gomez, R.B. (2002). Hyperspectral imaging: a useful
technology for transportation analysis. Optical
Engineering, 41(9), pp. 2137-2143.
Gorban, A., Kegl, B, Wunsch, D. and Zinovyev A. (2008).
Principal Manifolds for Data Visualisation and
Dimension Reduction, Lecture notes in computational
science and engineering, Springer, Berlin –
Heidelberg – New York.
Gualtieri, J.A. and Cromp, R.F. (1999). Support vector
machines for hyperspectral remote sensing
classification, available at: http://ntrs.nasa.gov/archive
/nasa/casi.ntrs.nasa.gov/19990021532.pdf (accessed 5
January 2016).
Herold, M., Roberts, D., Smadi, O and Noronha, V.
(2004a). Road condition mapping with hyperspectral
remote sensing. Available at: http://www.geogr.uni-
jena.de/~c5hema/urbanspec/av04_roadmapping_herol
detal.pdf (accessed 5 January 2016).
Herold, M., Gardner, M, Noronha, V. and Roberts, V.
(2004b). Spectrometry and hyperspectral remote
sensing of urban road infrastructure. Available at:
http://www.eo.uni-jena.de/~c5hema/pub/rse04_herold
etal.pdf (accessed 5 January 2016).
Hu, W., Huang, Y., Wei, L., Zhang, F., and Li, H. (2015).
Deep Convolutional Neural Networks for
Hyperspectral Image Classification. Journal of
Sensors, vol. 2015, Article ID 258619, 12 pages.
Keshava, N. (2003). Survey of Spectral Unmixing
Algorithms. Lincoln Laboratory Journal, 14(1), pp.
55-78.
Krizhevsky, A., Sutskever, I. and Geoffrey E.H. (2012).
ImageNet Classification with Deep Convolutional
Neural Networks. Advances in Neural Information
Processing Systems 25. Curran Associates, Inc. Pp.
1097-1105. Available at: http://papers.nips.cc/paper/48
24-imagenet-classification-with-deep-convolutional-ne
ural-networks.pdf.
Kukharenko, B.G. (2013). Algorithms of analysis of
hyperspectral images components, Supplement of
Journal “Information technologies”, No. 6, - 32 p.
Mei, A., Salvatori, R., Fiore, N., Allegrini, A. and
D’Andrea (2014). A Integration of field and laboratory
spectral data with multi-resolution remote sensed
imagery for asphalt surface differentiation. Remote
sensing, Vol. 6, pp. 2765–2781.
Mikheeva, T.I. and Fedoseev, А.А. (2014). Clusterization
of Hyperspectral Data of Transport Infrastructure
Objects Monitoring. Reporter of Samara Scientific
Center of Russian Academy of Sciences, Vol. 16 No. 4
(2), pp. 435-442.
Miraliakbari, A. and Hahn, M (2014). Development of
multi-sensor system for road condition mapping. The
International archives of the photogrammetry, remote
sensing and spatial information, Vol. XL-1, pp. 265–
272.
Resende, M., Bernucci, L. and Quintanilha, J. (2014).
Monitoring the condition of roads pavement surfaces:
proposal of methodology using hyperspectral images,
Journal of Transport Literature, 8(2), pp. 201–220.
Ratle, F., Camps-Valls, G. and Weston, J. (2010).
Semisupervised neural networks for efficient
hyperspectral image classification, IEEE Transactions
on Geoscience and Remote Sensing, 48(5), pp. 2271–
2282.
Robila, S. (2005). Investigation of Spectral Screening
Techniques for Independent Component Analysis
Based Hyperspectral Image Processing. Available at:
http ://www.cs.uno.edu/~stefan/ (accessed 5 January
2016).
Rodarmel, C. and Shan, J. (2002). Principal component
analysis for hyperspectral image classification.
Surveying and Land Information Science, 62(2), pp.
115-122.
Saprykin, O. and Saprykina, O. (2015). Multilevel
Modelling of Urban Transport Infrastructure. In
Proceedings of the 1st International Conference on
Vehicle Technology and Intelligent Transport Systems
(VEHITS-2015), Portugal, Lisbon: SCITEPRESS, pp.
78-82.
Schott, J. (2007). Remote sensing: the image chain
approach, 2nd ed., Oxford University Press, USA.
Schowengerdt, R.A. (2010). Remote Sensing: Methods
and Models for Image Processing. Technosphera,
Moscow.
Simonyan, K. and Zisserman, A. (2014). Very Deep
Convolutional Networks for Large-Scale Image
Recognition. CoRR. abs/1409.1556.
Yuanliu, X., Runsheng, W. and Shengwen, L. (2007).
Atmospheric correction of hyperspectral data using
MODTRAN model. Proceedings of 16th National
Symposium on Remote Sensing of China, 7 pages.
Zhuravel, J.N. and Fedoseev, A.A. (2013). Specificity of
Hyperspectral Remote Sensing Data Processing for the
Tasks of Environment Monitoring, Computer Optics,
Vol. 37 No. 4. - pp. 471-476.
Wei, J., Zhou, G., Zheng, Z. (2009). Survey and analysis
of land satellite remote sensing applied in highway
transportations infrastructure engineering. Available
at: http://www.asprs.org/a/publications/proceedings/ba
ltimore09/0102.pdf (accessed 5 January 2016).